1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use crate::Integer;
use crate::Matrix;
use crate::Matrix2d;
use crate::Matrix3d;
use crate::Matrix4d;
use crate::MatrixOps;
use crate::Point;
use crate::Vector;
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct AffineTransformation<S, M>
where
S: Integer,
M: Matrix<S>,
{
m: M,
t: M::V,
}
impl<S, M> AffineTransformation<S, M>
where
S: Integer,
M: Matrix<S>,
{
pub fn new(m: M, t: M::V) -> Self {
AffineTransformation { m, t }
}
pub fn identity() -> Self {
Self::new(M::unit(), M::V::zero())
}
pub fn compose<'a>(&'a self, other: &'a Self) -> Self
where
&'a M: MatrixOps<S, &'a M, M>,
&'a M: MatrixOps<S, M::V, M::V>,
{
Self::new(&self.m * &other.m, &other.m * self.t + other.t)
}
pub fn apply<'a>(&'a self, p: Point<S, M::V>) -> Point<S, M::V>
where
&'a M: MatrixOps<S, M::V, M::V>,
{
Point::from(&self.m * p.to_vec() + self.t)
}
}
impl<S, M> Default for AffineTransformation<S, M>
where
S: Integer,
M: Matrix<S>,
{
fn default() -> Self {
Self::identity()
}
}
pub type AffineTransformation2d<S> = AffineTransformation<S, Matrix2d<S>>;
pub type AffineTransformation3d<S> = AffineTransformation<S, Matrix3d<S>>;
pub type AffineTransformation4d<S> = AffineTransformation<S, Matrix4d<S>>;
#[cfg(test)]
mod tests {
use crate::p2d;
use crate::p3d;
use crate::p4d;
use crate::v2d;
use crate::AffineTransformation2d as AT2d;
use crate::AffineTransformation3d as AT3d;
use crate::AffineTransformation4d as AT4d;
use crate::Matrix2d;
#[test]
fn test_compose() {
let at0 = AT2d::new(Matrix2d::new(0, -1, 1, 0), v2d(2, 3));
let at1 = AT2d::new(Matrix2d::new(0, -1, 1, 0), v2d(4, 5));
assert_eq!(
AT2d::new(Matrix2d::new(-1, 0, 0, -1), v2d(1, 7)),
at0.compose(&at1)
);
}
#[test]
fn test_apply() {
let at = AT2d::new(Matrix2d::new(0, -1, 1, 0), v2d(2, 3));
assert_eq!(p2d(-2, 6), at.apply(p2d(3, 4)));
}
#[test]
fn test_compose_apply_2d() {
let at0 = AT2d::new(Matrix2d::new(0, -1, 1, 0), v2d(2, 3));
let at1 = AT2d::new(Matrix2d::new(0, -1, 1, 0), v2d(4, 5));
let at = at0.compose(&at1);
assert_eq!(at1.apply(at0.apply(p2d(1, 0))), at.apply(p2d(1, 0)));
assert_eq!(at1.apply(at0.apply(p2d(0, 1))), at.apply(p2d(0, 1)));
}
#[test]
fn test_identity_2d() {
let at = AT2d::identity();
assert_eq!(p2d(1, 0), at.apply(p2d(1, 0)));
assert_eq!(p2d(0, 1), at.apply(p2d(0, 1)));
}
#[test]
fn test_identity_3d() {
let at = AT3d::identity();
assert_eq!(p3d(1, 0, 0), at.apply(p3d(1, 0, 0)));
assert_eq!(p3d(0, 1, 0), at.apply(p3d(0, 1, 0)));
assert_eq!(p3d(0, 0, 1), at.apply(p3d(0, 0, 1)));
}
#[test]
fn test_identity_4d() {
let at = AT4d::identity();
assert_eq!(p4d(1, 0, 0, 0), at.apply(p4d(1, 0, 0, 0)));
assert_eq!(p4d(0, 1, 0, 0), at.apply(p4d(0, 1, 0, 0)));
assert_eq!(p4d(0, 0, 1, 0), at.apply(p4d(0, 0, 1, 0)));
assert_eq!(p4d(0, 0, 0, 1), at.apply(p4d(0, 0, 0, 1)));
}
}