1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
// Copyright (c) 2017,2018,2020 Ivaylo Petrov
//
// Licensed under the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//
// author: Ivaylo Petrov <ivajloip@gmail.com>

//! Provides types and methods for parsing LoRaWAN payloads.
//!
//! # Examples
//!
//! ```
//! use lorawan_encoding::parser::*;
//! use lorawan_encoding::keys::*;
//!
//! let data = vec![0x40, 0x04, 0x03, 0x02, 0x01, 0x80, 0x01, 0x00, 0x01,
//!     0xa6, 0x94, 0x64, 0x26, 0x15, 0xd6, 0xc3, 0xb5, 0x82];
//! if let Ok(PhyPayload::Data(DataPayload::Encrypted(phy))) = parse(data) {
//!     let key = AES128([1; 16]);
//!     let decrypted = phy.decrypt(None, Some(&key), 1).unwrap();
//!     if let Ok(FRMPayload::Data(data_payload)) =
//!             decrypted.frm_payload() {
//!         println!("{}", String::from_utf8_lossy(data_payload));
//!     }
//! } else {
//!     panic!("failed to parse data payload");
//! }
//! ```

use super::keys::{CryptoFactory, Encrypter, AES128, MIC};
use super::maccommands::{parse_mac_commands, DLSettings, Frequency, MacCommandIterator};
use super::securityhelpers;
use super::securityhelpers::generic_array::GenericArray;

#[cfg(feature = "default-crypto")]
use super::default_crypto::DefaultFactory;

macro_rules! fixed_len_struct {
    (
        $(#[$outer:meta])*
        struct $type:ident[$size:expr];
    ) => {
        $(#[$outer])*
        #[derive(Debug, Eq)]
        pub struct $type<T: AsRef<[u8]>>(T);

        impl<T: AsRef<[u8]>> $type<T> {
            fn new_from_raw(bytes: T) -> $type<T> {
                $type(bytes)
            }

            pub fn new(data: T) -> Option<$type<T>> {
                let bytes = data.as_ref();
                if bytes.len() != $size {
                    None
                } else {
                    Some($type(data))
                }
            }
        }

        impl<T: AsRef<[u8]> + Clone> Clone for $type<T> {
            fn clone(&self) -> Self {
                Self(self.0.clone())
            }
        }

        impl<T: AsRef<[u8]> + Copy> Copy for $type<T> {
        }

        impl<T: AsRef<[u8]>, V: AsRef<[u8]>> PartialEq<$type<T>> for $type<V> {
            fn eq(&self, other: &$type<T>) -> bool {
                self.as_ref() == other.as_ref()
            }
        }

        impl<'a> From<&'a [u8; $size]> for $type<&'a [u8; $size]> {
            fn from(v: &'a [u8; $size]) -> Self {
                $type(v)
            }
        }

        impl<T: AsRef<[u8]>> AsRef<[u8]> for $type<T> {
            fn as_ref(&self) -> &[u8] {
                self.0.as_ref()
            }
        }

        impl<T: AsRef<[u8]>> $type<T> {
            #[inline]
            pub fn to_owned(&self) -> $type<[u8; $size]> {
                let mut data = [0 as u8; $size];
                data.copy_from_slice(self.0.as_ref());
                $type(data)
            }
        }

        impl<T: AsRef<[u8]> + Default> Default for $type<T> {
            #[inline]
            fn default() -> $type<T> {
                $type(T::default())
            }
        }

    };
}

/// PhyPayload is a type that represents a physical LoRaWAN payload.
///
/// It can either be JoinRequest, JoinAccept, or DataPayload.
#[derive(Debug, PartialEq)]
pub enum PhyPayload<T, F> {
    JoinRequest(JoinRequestPayload<T, F>),
    JoinAccept(JoinAcceptPayload<T, F>),
    Data(DataPayload<T, F>),
}

impl<T: AsRef<[u8]>, F> AsRef<[u8]> for PhyPayload<T, F> {
    fn as_ref(&self) -> &[u8] {
        match self {
            PhyPayload::JoinRequest(jr) => jr.as_bytes(),
            PhyPayload::JoinAccept(ja) => ja.as_bytes(),
            PhyPayload::Data(data) => data.as_bytes(),
        }
    }
}

/// JoinAcceptPayload is a type that represents a JoinAccept.
///
/// It can either be encrypted for example as a result from the [parse](fn.parse.html)
/// function or not.
#[derive(Debug, PartialEq)]
pub enum JoinAcceptPayload<T, F> {
    Encrypted(EncryptedJoinAcceptPayload<T, F>),
    Decrypted(DecryptedJoinAcceptPayload<T, F>),
}

impl<T: AsRef<[u8]>, F> AsPhyPayloadBytes for JoinAcceptPayload<T, F> {
    fn as_bytes(&self) -> &[u8] {
        match self {
            JoinAcceptPayload::Encrypted(e) => e.as_bytes(),
            JoinAcceptPayload::Decrypted(d) => d.as_bytes(),
        }
    }
}

/// DataPayload is a type that represents a ConfirmedDataUp, ConfirmedDataDown,
/// UnconfirmedDataUp or UnconfirmedDataDown.
///
/// It can either be encrypted for example as a result from the [parse](fn.parse.html)
/// function or not.
#[derive(Debug, PartialEq)]
pub enum DataPayload<T, F> {
    Encrypted(EncryptedDataPayload<T, F>),
    Decrypted(DecryptedDataPayload<T>),
}

impl<T: AsRef<[u8]>, F> DataHeader for DataPayload<T, F> {
    fn as_data_bytes(&self) -> &[u8] {
        match self {
            DataPayload::Encrypted(data) => data.as_data_bytes(),
            DataPayload::Decrypted(data) => data.as_data_bytes(),
        }
    }
}

/// Trait with the sole purpose to make clear distinction in some implementations between types
/// that just happen to have AsRef and those that want to have the given implementations (like
/// MICAble and MHDRAble).
pub trait AsPhyPayloadBytes {
    fn as_bytes(&self) -> &[u8];
}

impl AsRef<[u8]> for dyn AsPhyPayloadBytes {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

/// Helper trait to add mic to all types that should have it.
pub trait MICAble {
    /// Gives the MIC of the PhyPayload.
    fn mic(&self) -> MIC;
}

impl<T: AsPhyPayloadBytes> MICAble for T {
    fn mic(&self) -> MIC {
        let data = self.as_bytes();
        let len = data.len();
        MIC([data[len - 4], data[len - 3], data[len - 2], data[len - 1]])
    }
}

/// Helper trait to add mhdr to all types that should have it.
pub trait MHDRAble {
    /// Gives the MIC of the PhyPayload.
    fn mhdr(&self) -> MHDR;
}

/// Assumes at least one byte in the data.
impl<T: AsPhyPayloadBytes> MHDRAble for T {
    fn mhdr(&self) -> MHDR {
        let data = self.as_bytes();
        MHDR(data[0])
    }
}

/// JoinAcceptPayload represents a JoinRequest.
///
/// It can be built either directly through the [new](#method.new) or using the
/// [parse](fn.parse.html) function.
#[derive(Debug, PartialEq)]
pub struct JoinRequestPayload<T, F>(T, F);

impl<T: AsRef<[u8]>, F> AsPhyPayloadBytes for JoinRequestPayload<T, F> {
    fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: AsRef<[u8]>, F: CryptoFactory> JoinRequestPayload<T, F> {
    /// Creates a new JoinRequestPayload if the provided data is acceptable.
    ///
    /// # Argument
    ///
    /// * data - the bytes for the payload.
    ///
    /// # Examples
    ///
    /// ```
    /// let data = vec![0x00, 0x04, 0x03, 0x02, 0x01, 0x04, 0x03, 0x02, 0x01, 0x05, 0x04, 0x03,
    ///     0x02, 0x05, 0x04, 0x03, 0x02, 0x2d, 0x10, 0x6a, 0x99, 0x0e, 0x12];
    /// let phy = lorawan_encoding::parser::JoinRequestPayload::new_with_factory(data,
    ///     lorawan_encoding::default_crypto::DefaultFactory);
    /// ```
    pub fn new_with_factory<'a>(data: T, factory: F) -> Result<Self, &'a str> {
        if !Self::can_build_from(data.as_ref()) {
            Err("can not build JoinRequestPayload from the provided data")
        } else {
            Ok(Self(data, factory))
        }
    }

    fn can_build_from(bytes: &[u8]) -> bool {
        bytes.len() == 23 && MHDR(bytes[0]).mtype() == MType::JoinRequest
    }

    /// Gives the APP EUI of the JoinRequest.
    pub fn app_eui(&self) -> EUI64<&[u8]> {
        EUI64::new_from_raw(&self.0.as_ref()[1..9])
    }

    /// Gives the DEV EUI of the JoinRequest.
    pub fn dev_eui(&self) -> EUI64<&[u8]> {
        EUI64::new_from_raw(&self.0.as_ref()[9..17])
    }

    /// Gives the DEV Nonce of the JoinRequest.
    pub fn dev_nonce(&self) -> DevNonce<&[u8]> {
        DevNonce::new_from_raw(&self.0.as_ref()[17..19])
    }

    /// Verifies that the JoinRequest has correct MIC.
    pub fn validate_mic(&self, key: &AES128) -> bool {
        self.mic() == self.calculate_mic(key)
    }

    fn calculate_mic(&self, key: &AES128) -> MIC {
        let d = self.0.as_ref();
        securityhelpers::calculate_mic(&d[..d.len() - 4], self.1.new_mac(key))
    }
}

/// EncryptedJoinAcceptPayload represents an encrypted JoinAccept.
///
/// It can be built either directly through the [new](#method.new) or using the
/// [parse](fn.parse.html) function.
#[derive(Debug, PartialEq)]
pub struct EncryptedJoinAcceptPayload<T, F>(T, F);

impl<T: AsRef<[u8]>, F> AsPhyPayloadBytes for EncryptedJoinAcceptPayload<T, F> {
    fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>, F: CryptoFactory> EncryptedJoinAcceptPayload<T, F> {
    /// Creates a new EncryptedJoinAcceptPayload if the provided data is acceptable.
    ///
    /// # Argument
    ///
    /// * data - the bytes for the payload.
    /// * factory - the factory that shall be used to create object for crypto functions.
    pub fn new_with_factory<'a>(data: T, factory: F) -> Result<Self, &'a str> {
        if Self::can_build_from(data.as_ref()) {
            Ok(Self(data, factory))
        } else {
            Err("can not build EncryptedJoinAcceptPayload from the provided data")
        }
    }

    fn can_build_from(bytes: &[u8]) -> bool {
        (bytes.len() == 17 || bytes.len() == 33) && MHDR(bytes[0]).mtype() == MType::JoinAccept
    }

    /// Decrypts the EncryptedJoinAcceptPayload producing a DecryptedJoinAcceptPayload.
    ///
    /// This method consumes the EncryptedJoinAcceptPayload as it reuses the underlying memory.
    /// Please note that it does not verify the mic.
    ///
    /// # Argument
    ///
    /// * key - the key to be used for the decryption.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut data = vec![0x20, 0x49, 0x3e, 0xeb, 0x51, 0xfb, 0xa2, 0x11, 0x6f, 0x81, 0x0e, 0xdb,
    ///     0x37, 0x42, 0x97, 0x51, 0x42];
    /// let phy = lorawan_encoding::parser::EncryptedJoinAcceptPayload::new(data);
    /// let key = lorawan_encoding::keys::AES128([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    ///     0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]);
    /// let decrypted = phy.unwrap().decrypt(&key);
    /// ```
    pub fn decrypt(mut self, key: &AES128) -> DecryptedJoinAcceptPayload<T, F> {
        {
            let bytes = self.0.as_mut();
            let len = bytes.len();
            let aes_enc = self.1.new_enc(key);

            for i in 0..(len >> 4) {
                let start = (i << 4) + 1;
                let block = GenericArray::from_mut_slice(&mut bytes[start..(start + 16)]);
                aes_enc.encrypt_block(block);
            }
        }
        DecryptedJoinAcceptPayload(self.0, self.1)
    }
}

/// DecryptedJoinAcceptPayload represents a decrypted JoinAccept.
///
/// It can be built either directly through the [new](#method.new) or using the
/// [EncryptedJoinAcceptPayload.decrypt](struct.EncryptedJoinAcceptPayload.html#method.decrypt) function.
#[derive(Debug, PartialEq)]
pub struct DecryptedJoinAcceptPayload<T, F>(T, F);

impl<T: AsRef<[u8]>, F> AsPhyPayloadBytes for DecryptedJoinAcceptPayload<T, F> {
    fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: AsRef<[u8]>, F: CryptoFactory> DecryptedJoinAcceptPayload<T, F> {
    /// Verifies that the JoinAccept has correct MIC.
    pub fn validate_mic(&self, key: &AES128) -> bool {
        self.mic() == self.calculate_mic(key)
    }

    pub fn calculate_mic(&self, key: &AES128) -> MIC {
        let d = self.0.as_ref();
        securityhelpers::calculate_mic(&d[..d.len() - 4], self.1.new_mac(key))
    }

    /// Computes the network session key for a given device.
    ///
    /// # Argument
    ///
    /// * app_nonce - the network server nonce.
    /// * nwk_addr - the address of the network.
    /// * dev_nonce - the nonce from the device.
    /// * key - the app key.
    ///
    /// # Examples
    ///
    /// ```
    /// let dev_nonce = vec![0xcc, 0xdd];
    /// let data = vec![0x20, 0x49, 0x3e, 0xeb, 0x51, 0xfb, 0xa2, 0x11, 0x6f, 0x81, 0x0e, 0xdb, 0x37,
    ///     0x42, 0x97, 0x51, 0x42];
    /// let app_key = lorawan_encoding::keys::AES128([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    ///     0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]);
    /// let join_accept = lorawan_encoding::parser::DecryptedJoinAcceptPayload::new(data, &app_key).unwrap();
    ///
    /// let nwk_skey = join_accept.derive_newskey(
    ///     &lorawan_encoding::parser::DevNonce::new(&dev_nonce[..]).unwrap(),
    ///     &app_key,
    /// );
    /// ```
    pub fn derive_newskey<TT: AsRef<[u8]>>(
        &self,
        dev_nonce: &DevNonce<TT>,
        key: &AES128,
    ) -> AES128 {
        self.derive_session_key(0x1, dev_nonce, key)
    }

    /// Computes the application session key for a given device.
    ///
    /// # Argument
    ///
    /// * app_nonce - the network server nonce.
    /// * nwk_addr - the address of the network.
    /// * dev_nonce - the nonce from the device.
    /// * key - the app key.
    ///
    /// # Examples
    ///
    /// ```
    /// let dev_nonce = vec![0xcc, 0xdd];
    /// let data = vec![0x20, 0x49, 0x3e, 0xeb, 0x51, 0xfb, 0xa2, 0x11, 0x6f, 0x81, 0x0e, 0xdb, 0x37,
    ///     0x42, 0x97, 0x51, 0x42];
    /// let app_key = lorawan_encoding::keys::AES128([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    ///     0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]);
    /// let join_accept = lorawan_encoding::parser::DecryptedJoinAcceptPayload::new(data, &app_key).unwrap();
    ///
    /// let app_skey = join_accept.derive_appskey(
    ///     &lorawan_encoding::parser::DevNonce::new(&dev_nonce[..]).unwrap(),
    ///     &app_key,
    /// );
    /// ```
    pub fn derive_appskey<TT: AsRef<[u8]>>(
        &self,
        dev_nonce: &DevNonce<TT>,
        key: &AES128,
    ) -> AES128 {
        self.derive_session_key(0x2, dev_nonce, key)
    }

    fn derive_session_key<TT: AsRef<[u8]>>(
        &self,
        first_byte: u8,
        dev_nonce: &DevNonce<TT>,
        key: &AES128,
    ) -> AES128 {
        let cipher = self.1.new_enc(key);

        // note: AppNonce is 24 bit, NetId is 24 bit, DevNonce is 16 bit
        let app_nonce = self.app_nonce();
        let nwk_addr = self.net_id();
        let (app_nonce_arr, nwk_addr_arr, dev_nonce_arr) =
            (app_nonce.as_ref(), nwk_addr.as_ref(), dev_nonce.as_ref());

        let mut block = [0u8; 16];
        block[0] = first_byte;
        block[1] = app_nonce_arr[0];
        block[2] = app_nonce_arr[1];
        block[3] = app_nonce_arr[2];
        block[4] = nwk_addr_arr[0];
        block[5] = nwk_addr_arr[1];
        block[6] = nwk_addr_arr[2];
        block[7] = dev_nonce_arr[0];
        block[8] = dev_nonce_arr[1];

        let mut input = GenericArray::clone_from_slice(&block);
        cipher.encrypt_block(&mut input);

        let mut output_key = [0u8; 16];
        output_key.copy_from_slice(&input[0..16]);
        AES128(output_key)
    }
}

impl<T: AsRef<[u8]>, F> DecryptedJoinAcceptPayload<T, F> {
    /// Gives the app nonce of the JoinAccept.
    pub fn app_nonce(&self) -> AppNonce<&[u8]> {
        AppNonce::new_from_raw(&self.0.as_ref()[1..4])
    }

    /// Gives the net ID of the JoinAccept.
    pub fn net_id(&self) -> NwkAddr<&[u8]> {
        NwkAddr::new_from_raw(&self.0.as_ref()[4..7])
    }

    /// Gives the dev address of the JoinAccept.
    pub fn dev_addr(&self) -> DevAddr<&[u8]> {
        DevAddr::new_from_raw(&self.0.as_ref()[7..11])
    }

    /// Gives the downlink configuration of the JoinAccept.
    pub fn dl_settings(&self) -> DLSettings {
        DLSettings::new(self.0.as_ref()[11])
    }

    /// Gives the RX delay of the JoinAccept.
    pub fn rx_delay(&self) -> u8 {
        self.0.as_ref()[12] & 0x0f
    }

    /// Gives the channel frequency list of the JoinAccept.
    pub fn c_f_list(&self) -> Option<[Frequency; 5]> {
        if self.0.as_ref().len() == 17 {
            return None;
        }
        let d = self.0.as_ref();
        let res = [
            Frequency::new_from_raw(&d[13..16]),
            Frequency::new_from_raw(&d[16..19]),
            Frequency::new_from_raw(&d[19..22]),
            Frequency::new_from_raw(&d[22..25]),
            Frequency::new_from_raw(&d[25..28]),
        ];
        Some(res)
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>, F: CryptoFactory> DecryptedJoinAcceptPayload<T, F> {
    /// Creates a DecryptedJoinAcceptPayload from the bytes of a JoinAccept.
    ///
    /// The JoinAccept payload is automatically decrypted and the mic is verified using the suplied
    /// crypto factory implementation.
    ///
    /// # Argument
    ///
    /// * bytes - the data from which the PhyPayload is to be built.
    /// * key - the key that is to be used to decrypt the payload.
    /// * factory - the factory that shall be used to create object for crypto functions.
    pub fn new_with_factory<'a, 'b>(data: T, key: &'a AES128, factory: F) -> Result<Self, &'b str> {
        let t = EncryptedJoinAcceptPayload::new_with_factory(data, factory)?;
        let res = t.decrypt(key);
        if res.validate_mic(key) {
            Ok(res)
        } else {
            Err("MIC did not match")
        }
    }
}

/// Helper trait for EncryptedDataPayload and DecryptedDataPayload.
///
/// NOTE: Does not check the payload size as that should be done prior to building the object of
/// the implementing type.
pub trait DataHeader {
    /// Equivalent to AsRef<[u8]>.
    fn as_data_bytes(&self) -> &[u8];

    /// Gives the FHDR of the DataPayload.
    fn fhdr(&self) -> FHDR {
        FHDR::new_from_raw(
            &self.as_data_bytes()[1..(1 + self.fhdr_length())],
            self.is_uplink(),
        )
    }

    /// Gives whether the payload is uplink or not.
    fn is_uplink(&self) -> bool {
        let mtype = MHDR(self.as_data_bytes()[0]).mtype();

        mtype == MType::UnconfirmedDataUp || mtype == MType::ConfirmedDataUp
    }

    /// Gives the FPort of the DataPayload if there is one.
    fn f_port(&self) -> Option<u8> {
        let fhdr_length = self.fhdr_length();
        let data = self.as_data_bytes();
        if fhdr_length + 1 >= data.len() - 5 {
            return None;
        }
        Some(data[1 + fhdr_length])
    }

    /// Gives the length of the FHDR field.
    fn fhdr_length(&self) -> usize {
        fhdr_length(self.as_data_bytes()[5])
    }
}

fn fhdr_length(b: u8) -> usize {
    7 + (b & 0x0f) as usize
}

impl<T: DataHeader> AsPhyPayloadBytes for T {
    fn as_bytes(&self) -> &[u8] {
        self.as_data_bytes()
    }
}

/// EncryptedDataPayload represents an encrypted data payload.
///
/// It can be built either directly through the [new](#method.new) or using the
/// [parse](fn.parse.html) function.
#[derive(Debug, PartialEq)]
pub struct EncryptedDataPayload<T, F>(T, F);

impl<T: AsRef<[u8]>, F> DataHeader for EncryptedDataPayload<T, F> {
    fn as_data_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: AsRef<[u8]>, F: CryptoFactory> EncryptedDataPayload<T, F> {
    /// Creates a new EncryptedDataPayload if the provided data is acceptable.
    ///
    /// # Argument
    ///
    /// * data - the bytes for the payload.
    /// * factory - the factory that shall be used to create object for crypto functions.
    pub fn new_with_factory<'a>(data: T, factory: F) -> Result<Self, &'a str> {
        if Self::can_build_from(data.as_ref()) {
            Ok(Self(data, factory))
        } else {
            Err("can not build EncryptedDataPayload from the provided data")
        }
    }

    fn can_build_from(bytes: &[u8]) -> bool {
        let has_acceptable_len = bytes.len() >= 12 &&
            // TODO: Bug related to possibly insufficient number of bytes
            fhdr_length(bytes[5]) <= bytes.len();
        if !has_acceptable_len {
            return false;
        }

        matches!(
            MHDR(bytes[0]).mtype(),
            MType::ConfirmedDataUp
                | MType::ConfirmedDataDown
                | MType::UnconfirmedDataUp
                | MType::UnconfirmedDataDown
        )
    }

    /// Verifies that the DataPayload has correct MIC.
    pub fn validate_mic(&self, key: &AES128, fcnt: u32) -> bool {
        self.mic() == self.calculate_mic(key, fcnt)
    }

    fn calculate_mic(&self, key: &AES128, fcnt: u32) -> MIC {
        let d = self.0.as_ref();
        securityhelpers::calculate_data_mic(&d[..d.len() - 4], self.1.new_mac(key), fcnt)
    }
}

impl<T: AsRef<[u8]> + AsMut<[u8]>, F: CryptoFactory> EncryptedDataPayload<T, F> {
    /// Decrypts the EncryptedDataPayload payload.
    ///
    /// This method consumes the EncryptedDataPayload as it reuses the underlying memory. Please
    /// note that it does not verify the mic.
    ///
    /// If used on the application server side for application payload decryption, the nwk_skey can
    /// be None. If used on the network server side and the app_skey is not available, app_skey can
    /// be None when fport is 0. Failure to meet those constraints will result in an Err being
    /// returned.
    ///
    /// # Argument
    ///
    /// * nwk_skey - the Network Session key used to decrypt the mac commands in case the payload
    ///     is transporting those.
    /// * app_skey - the Application Session key used to decrypt the application payload in case
    ///     the payload is transporting that.
    /// * fcnt - the counter used to encrypt the payload.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut data = vec![0x40, 0x04, 0x03, 0x02, 0x01, 0x80, 0x01, 0x00, 0x01,
    ///     0xa6, 0x94, 0x64, 0x26, 0x15, 0xd6, 0xc3, 0xb5, 0x82];
    /// let key = lorawan_encoding::keys::AES128([1; 16]);
    /// let enc_phy = lorawan_encoding::parser::EncryptedDataPayload::new(data).unwrap();
    /// let dec_phy = enc_phy.decrypt(None, Some(&key), 1);
    /// ```
    pub fn decrypt<'a, 'b>(
        mut self,
        nwk_skey: Option<&'a AES128>,
        app_skey: Option<&'a AES128>,
        fcnt: u32,
    ) -> Result<DecryptedDataPayload<T>, &'b str> {
        let fhdr_length = self.fhdr_length();
        let fhdr = self.fhdr();
        let full_fcnt = compute_fcnt(fcnt, fhdr.fcnt());
        let key = if self.f_port().is_some() && self.f_port().unwrap() != 0 {
            app_skey
        } else {
            nwk_skey
        };
        if key.is_none() {
            return Err("key needed to decrypt the frm data payload was None");
        }
        let data = self.0.as_mut();
        let len = data.len();
        let start = 1 + fhdr_length + 1;
        let end = len - 4;
        if start < end {
            securityhelpers::encrypt_frm_data_payload(
                &mut data[..],
                start,
                end,
                full_fcnt,
                &self.1.new_enc(&key.unwrap()),
            );
        }

        Ok(DecryptedDataPayload(self.0))
    }

    /// Verifies the mic and decrypts the EncryptedDataPayload payload if mic matches.
    ///
    /// This is helper method that combines validate_mic and decrypt. In case the mic is fine, it
    /// consumes the EncryptedDataPayload and reuses the underlying memory to produce
    /// DecryptedDataPayload. If the mic does not match, it returns the original
    /// EncryptedDataPayload so that it can be tried against the keys of another device that shares
    /// the same dev_addr. For an example please see [decrypt](#method.decrypt).
    pub fn decrypt_if_mic_ok<'a>(
        self,
        nwk_skey: &'a AES128,
        app_skey: &'a AES128,
        fcnt: u32,
    ) -> Result<DecryptedDataPayload<T>, Self> {
        if !self.validate_mic(nwk_skey, fcnt) {
            Err(self)
        } else {
            Ok(self.decrypt(Some(nwk_skey), Some(app_skey), fcnt).unwrap())
        }
    }
}

fn compute_fcnt(old_fcnt: u32, fcnt: u16) -> u32 {
    ((old_fcnt >> 16) << 16) ^ u32::from(fcnt)
}

/// DecryptedDataPayload represents a decrypted DataPayload.
///
/// It can be built either directly through the [new](#method.new) or using the
/// [EncryptedDataPayload.decrypt](struct.EncryptedDataPayload.html#method.decrypt) function.
#[derive(Debug, PartialEq)]
pub struct DecryptedDataPayload<T>(T);

impl<T: AsRef<[u8]>> DataHeader for DecryptedDataPayload<T> {
    fn as_data_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl<T: AsRef<[u8]>> DecryptedDataPayload<T> {
    /// Returns FRMPayload that can represent either application payload or mac commands if fport
    /// is 0.
    pub fn frm_payload(&self) -> Result<FRMPayload, &str> {
        let data = self.as_data_bytes();
        let len = data.len();
        let fhdr_length = self.fhdr_length();
        //we have more bytes than fhdr + fport
        if len < fhdr_length + 6 {
            Ok(FRMPayload::None)
        } else if self.f_port() != Some(0) {
            // the size guarantees the existance of f_port
            Ok(FRMPayload::Data(&data[(1 + fhdr_length + 1)..(len - 4)]))
        } else {
            Ok(FRMPayload::MACCommands(FRMMacCommands::new(
                &data[(1 + fhdr_length + 1)..(len - 4)],
                self.is_uplink(),
            )))
        }
    }
}

/// Parses a payload as LoRaWAN physical payload.
///
/// # Argument
///
/// * bytes - the data from which the PhyPayload is to be built.
///
/// # Examples
///
/// ```
/// let mut data = vec![0x40, 0x04, 0x03, 0x02, 0x01, 0x80, 0x01, 0x00, 0x01,
///     0xa6, 0x94, 0x64, 0x26, 0x15, 0xd6, 0xc3, 0xb5, 0x82];
/// if let Ok(lorawan_encoding::parser::PhyPayload::Data(phy)) = lorawan_encoding::parser::parse(data) {
///     println!("{:?}", phy);
/// } else {
///     panic!("failed to parse data payload");
/// }
/// ```
#[cfg(feature = "default-crypto")]
pub fn parse<'a, T: AsRef<[u8]> + AsMut<[u8]>>(
    data: T,
) -> Result<PhyPayload<T, DefaultFactory>, &'a str> {
    parse_with_factory(data, DefaultFactory)
}

/// Parses a payload as LoRaWAN physical payload.
///
/// Check out [parse](fn.parse.html) if you do not need custom crypto factory.  
///
/// # Argument
///
/// * bytes - the data from which the PhyPayload is to be built.
/// * factory - the factory that shall be used to create object for crypto functions.
pub fn parse_with_factory<'a, T, F>(data: T, factory: F) -> Result<PhyPayload<T, F>, &'a str>
where
    T: AsRef<[u8]> + AsMut<[u8]>,
    F: CryptoFactory,
{
    let bytes = data.as_ref();
    let len = bytes.len();
    // the smallest payload is a data payload without fport and FRMPayload
    // which is 12 bytes long.
    if len < 12 {
        return Err("insufficient number of bytes");
    }
    match MHDR(bytes[0]).mtype() {
        MType::JoinRequest => Ok(PhyPayload::JoinRequest(
            JoinRequestPayload::new_with_factory(data, factory)?,
        )),
        MType::JoinAccept => Ok(PhyPayload::JoinAccept(JoinAcceptPayload::Encrypted(
            EncryptedJoinAcceptPayload::new_with_factory(data, factory)?,
        ))),
        MType::UnconfirmedDataUp
        | MType::ConfirmedDataUp
        | MType::UnconfirmedDataDown
        | MType::ConfirmedDataDown => Ok(PhyPayload::Data(DataPayload::Encrypted(
            EncryptedDataPayload::new_with_factory(data, factory)?,
        ))),
        _ => Err("unsupported message type"),
    }
}

/// MHDR represents LoRaWAN MHDR.
#[derive(Debug, PartialEq)]
pub struct MHDR(u8);

impl MHDR {
    pub fn new(byte: u8) -> MHDR {
        MHDR(byte)
    }

    /// Gives the type of message that PhyPayload is carrying.
    pub fn mtype(&self) -> MType {
        match self.0 >> 5 {
            0 => MType::JoinRequest,
            1 => MType::JoinAccept,
            2 => MType::UnconfirmedDataUp,
            3 => MType::UnconfirmedDataDown,
            4 => MType::ConfirmedDataUp,
            5 => MType::ConfirmedDataDown,
            6 => MType::RFU,
            _ => MType::Proprietary,
        }
    }

    /// Gives the version of LoRaWAN payload format.
    pub fn major(&self) -> Major {
        if self.0.trailing_zeros() >= 2 {
            Major::LoRaWANR1
        } else {
            Major::RFU
        }
    }
}

impl From<u8> for MHDR {
    fn from(v: u8) -> Self {
        MHDR(v)
    }
}

/// MType gives the possible message types of the PhyPayload.
#[derive(Debug, PartialEq)]
pub enum MType {
    JoinRequest,
    JoinAccept,
    UnconfirmedDataUp,
    UnconfirmedDataDown,
    ConfirmedDataUp,
    ConfirmedDataDown,
    RFU,
    Proprietary,
}

/// Major gives the supported LoRaWAN payload formats.
#[derive(Debug, PartialEq)]
pub enum Major {
    LoRaWANR1,
    RFU,
}

fixed_len_struct! {
    /// EUI64 represents a 64 bit EUI.
    struct EUI64[8];
}

fixed_len_struct! {
    /// DevNonce represents a 16 bit device nonce.
    struct DevNonce[2];
}

fixed_len_struct! {
    /// AppNonce represents a 24 bit network server nonce.
    struct AppNonce[3];
}

fixed_len_struct! {
    /// DevAddr represents a 32 bit device address.
    struct DevAddr[4];
}

#[allow(clippy::should_implement_trait)]
impl<T: AsRef<[u8]>> DevAddr<T> {
    pub fn nwk_id(&self) -> u8 {
        self.0.as_ref()[0] >> 1
    }
    pub fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

fixed_len_struct! {
    /// NwkAddr represents a 24 bit network address.
    struct NwkAddr[3];
}

/// FHDR represents FHDR from DataPayload.
#[derive(Debug, PartialEq)]
pub struct FHDR<'a>(&'a [u8], bool);

impl<'a> FHDR<'a> {
    pub fn new_from_raw(bytes: &'a [u8], uplink: bool) -> FHDR {
        FHDR(bytes, uplink)
    }

    pub fn new(bytes: &'a [u8], uplink: bool) -> Option<FHDR> {
        let data_len = bytes.len();
        if data_len < 7 {
            return None;
        }
        if data_len < fhdr_length(bytes[4]) {
            return None;
        }
        Some(FHDR(bytes, uplink))
    }

    /// Gives the device address associated with the given payload.
    pub fn dev_addr(&self) -> DevAddr<&'a [u8]> {
        DevAddr::new_from_raw(&self.0[0..4])
    }

    /// Gives the FCtrl associated with the given payload.
    pub fn fctrl(&self) -> FCtrl {
        FCtrl(self.0[4], self.1)
    }

    /// Gives the truncated FCnt associated with the given payload.
    pub fn fcnt(&self) -> u16 {
        (u16::from(self.0[6]) << 8) | u16::from(self.0[5])
    }

    /// Gives the piggy-backed MAC ommands associated with the given payload.
    pub fn fopts(&self) -> MacCommandIterator {
        let f_opts_len = FCtrl(self.0[4], self.1).f_opts_len();
        parse_mac_commands(&self.0[7 as usize..(7 + f_opts_len) as usize], self.1)
    }
}

/// FCtrl represents the FCtrl from FHDR.
#[derive(Debug, PartialEq)]
pub struct FCtrl(u8, bool);

impl FCtrl {
    pub fn new(bytes: u8, uplink: bool) -> FCtrl {
        FCtrl(bytes, uplink)
    }

    /// Gives whether ADR is enabled or not.
    pub fn adr(&self) -> bool {
        self.0 >> 7 == 1
    }

    /// Gives whether ADR ACK is requested.
    pub fn adr_ack_req(&self) -> bool {
        self.1 && self.0 & (1 << 6) != 0
    }

    /// Gives whether ack bit is set.
    pub fn ack(&self) -> bool {
        self.0 & (1 << 5) != 0
    }

    /// Gives whether there are more payloads pending.
    pub fn f_pending(&self) -> bool {
        !self.1 && self.0 & (1 << 4) != 0
    }

    /// Gives the size of FOpts.
    pub fn f_opts_len(&self) -> u8 {
        self.0 & 0x0f
    }

    /// Gives the binary representation of the FCtrl.
    pub fn raw_value(&self) -> u8 {
        self.0
    }
}

/// FRMPayload represents the FRMPayload that can either be the application
/// data or mac commands.
#[derive(Debug, PartialEq)]
pub enum FRMPayload<'a> {
    Data(&'a [u8]),
    MACCommands(FRMMacCommands<'a>),
    None,
}

/// FRMMacCommands represents the mac commands.
#[derive(Debug, PartialEq)]
pub struct FRMMacCommands<'a>(bool, &'a [u8]);

impl<'a> FRMMacCommands<'a> {
    pub fn new(bytes: &'a [u8], uplink: bool) -> Self {
        FRMMacCommands(uplink, bytes)
    }

    /// Gives the list of mac commands represented in the FRMPayload.
    pub fn mac_commands(&self) -> MacCommandIterator {
        parse_mac_commands(self.1, self.0)
    }
}