1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! This crate defines a basic [`LogProb`] wrapper for floats. The struct is designed so
//! that only values that are coherent for a log-probability are acceptable. This means that
//! [`LogProb`] can store:
//!     - Any finite negative float value (e.g. -0.23, -32535.05, -66.0).
//!     - Negative infinity (corresponding to 0.0 probability)
//!     - 0.0 *and* -0.0.
//!
//! If any other value is passed, [`LogProb::new`] returns a [`FloatIsNanOrPositive`] error.
//! You can also construct new [`LogProb`] from values in \[0,1\] by using
//! [`LogProb::from_raw_prob`]
//!
//! The crate also includes the ability to add log probabilities (equivalent take the product of
//! their corresponding raw probabilities):
//!
//! ```
//! use logprob::LogProb;
//! let x = LogProb::from_raw_prob(0.5).unwrap();
//! let y = LogProb::from_raw_prob(0.5).unwrap();
//! let z = x + y;
//! assert_eq!(z, LogProb::from_raw_prob(0.25).unwrap());
//! ```
//!
//! It is also possible to take product of a [`LogProb`] and an unsigned integer, which
//! corresponds to taking the exponent of the log-probability to the power of the integer.
//! ```
//! # use logprob::LogProb;
//! let x = LogProb::from_raw_prob(0.5_f64).unwrap();
//! let y: u8 = 2;
//! let z = x * y;
//! assert_eq!(z, LogProb::from_raw_prob(0.25).unwrap());
//! ```
//!
//!Finally, the crate also includes reasonably efficient implementations of
//![LogSumExp](https://en.wikipedia.org/wiki/LogSumExp) so that one can take the sum of
//!raw-probabilities directly with [`LogProb`].
//!
//! ```
//! # use logprob::LogProb;
//! let x = LogProb::from_raw_prob(0.5_f64).unwrap();
//! let y = LogProb::from_raw_prob(0.25).unwrap();
//! let z = x.add_log_prob(y).unwrap();
//! assert_eq!(z, LogProb::from_raw_prob(0.75).unwrap());
//! ```
//!
//! This can also work for slices or iterators (by importing [`log_sum_exp`] or the trait,
//! [`LogSumExp`] respectively. Note that for empty vectors or iterators, the
//! functions return a [`LogProb`] with negative infinity, corresponding to 0 probability.
//! ```
//! # use logprob::LogProb;
//! use logprob::{LogSumExp, log_sum_exp};
//! let x = LogProb::from_raw_prob(0.5_f64).unwrap();
//! let y = LogProb::from_raw_prob(0.25).unwrap();
//! let z = [x,y].iter().log_sum_exp().unwrap();
//! assert_eq!(z, LogProb::from_raw_prob(0.75).unwrap());
//! let v = log_sum_exp(&[x,y]).unwrap();
//! assert_eq!(z, LogProb::from_raw_prob(0.75).unwrap());
//! ```
//!
//! By default, the both [`log_sum_exp`] and [`LogProb::add_log_prob`] return a
//! [`ProbabilitiesSumToGreaterThanOne`] error if the sum is overflows what is a possible
//! [`LogProb`] value. However, one can use either the `clamped` or `float` versions of these
//! functions to return either a value clamped at 0.0 or the underlying float value which may be
//! greater than 0.0.
//! ```
//! # use logprob::LogProb;
//! # use logprob::{LogSumExp, log_sum_exp};
//! let x = LogProb::from_raw_prob(0.5_f64).unwrap();
//! let y = LogProb::from_raw_prob(0.75).unwrap();
//! let z = [x,y].into_iter().log_sum_exp_clamped();
//! assert_eq!(z, LogProb::new(0.0).unwrap());
//! let z = [x,y].into_iter().log_sum_exp_float();
//! approx::assert_relative_eq!(z, (1.25_f64).ln());
//!
//! ```
//!

#![warn(
    anonymous_parameters,
    missing_copy_implementations,
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    nonstandard_style,
    single_use_lifetimes,
    rustdoc::broken_intra_doc_links,
    trivial_casts,
    trivial_numeric_casts,
    unreachable_pub,
    unused_extern_crates,
    unused_qualifications,
    variant_size_differences
)]

use std::borrow::Borrow;

use num_traits::Float;
mod errors;
pub use errors::{FloatIsNanOrPositive, ProbabilitiesSumToGreaterThanOne};
mod adding;
mod math;

#[derive(Copy, Clone, PartialEq, PartialOrd, Debug, Default)]
#[repr(transparent)]

///Struct that can only hold float values that correspond to negative log
///probabilities.
pub struct LogProb<T>(T);
pub use adding::{log_sum_exp, log_sum_exp_clamped, log_sum_exp_float, LogSumExp};

impl<T: Float> LogProb<T> {
    ///Construct a new [`LogProb`] that is guaranteed to be negative (or +0.0).
    pub fn new(val: T) -> Result<Self, FloatIsNanOrPositive> {
        if val.is_nan() || (!val.is_zero() && val.is_sign_positive()) {
            Err(FloatIsNanOrPositive)
        } else {
            Ok(LogProb(val))
        }
    }

    ///Construct a new [`LogProb`] that is guaranteed to be negative (or +0.0) from a value in [0.0, 1.0].
    pub fn from_raw_prob(val: T) -> Result<Self, FloatIsNanOrPositive> {
        let val = val.ln();
        if val.is_nan() || (!val.is_zero() && val.is_sign_positive()) {
            Err(FloatIsNanOrPositive)
        } else {
            Ok(LogProb(val))
        }
    }

    /// Gets out the value.
    #[inline]
    pub fn into_inner(self) -> T {
        self.0
    }

    /// Get the equivalent non-log probability
    /// ```
    /// # use logprob::LogProb;
    /// let x = LogProb::from_raw_prob(0.25).unwrap();
    /// assert_eq!(x.raw_prob(), 0.25);
    /// ```
    #[inline]
    pub fn raw_prob(&self) -> T {
        self.0.exp()
    }

    /// Calculates the probability of the complement of this log-probability
    /// ```
    /// # use logprob::LogProb;
    /// let x = LogProb::from_raw_prob(0.25).unwrap();
    /// let y = LogProb::from_raw_prob(0.75).unwrap();
    /// assert_eq!(x.opposite_prob(), y);
    /// ```
    pub fn opposite_prob(&self) -> Self {
        LogProb((-self.0.exp()).ln_1p())
    }
}

impl<T: Float + std::fmt::Display> std::fmt::Display for LogProb<T> {
    #[inline]
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.fmt(f)
    }
}

impl Borrow<f32> for LogProb<f32> {
    #[inline]
    fn borrow(&self) -> &f32 {
        &self.0
    }
}

impl Borrow<f64> for LogProb<f64> {
    #[inline]
    fn borrow(&self) -> &f64 {
        &self.0
    }
}

impl<T: Float> Eq for LogProb<T> {}

#[allow(clippy::derive_ord_xor_partial_ord)]
impl<T: Float> Ord for LogProb<T> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.partial_cmp(&other.0).unwrap()
    }
}

impl From<LogProb<f32>> for f32 {
    #[inline]
    fn from(f: LogProb<f32>) -> f32 {
        f.0
    }
}

impl From<LogProb<f64>> for f64 {
    #[inline]
    fn from(f: LogProb<f64>) -> f64 {
        f.0
    }
}
impl TryFrom<f64> for LogProb<f64> {
    type Error = FloatIsNanOrPositive;

    fn try_from(value: f64) -> Result<Self, Self::Error> {
        LogProb::new(value)
    }
}

impl TryFrom<f32> for LogProb<f32> {
    type Error = FloatIsNanOrPositive;

    fn try_from(value: f32) -> Result<Self, Self::Error> {
        LogProb::new(value)
    }
}