local_lru/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//! [`LocalCache`] is a thread safe and lock free implementation of LRU caching.
//! Its speed and thread-safety is based on using thread-local storage rather than locking. This means that each thread has its own cache, and the cache is not shared between threads.
//!
//! # Example
//!
//! ```
//! use local_lru::LocalCache;  
//! use bytes::Bytes;
//! // Create a new cache with a capacity of 2 items and a TTL of 60 seconds
//! let cache = LocalCache::new(2, 60);
//! cache.add_item("key1", Bytes::from("value1"));
//! let item = cache.get_item("key1");
//! ```
//! One of the main challenges with LRU caching is that it invovles a lot of writings and updates of its internal data structures: each get and set operation in LRU cache requires updating of at least one pointer.
//! This fact diminishes the famous O(1) complexity of LRU cache operations in multithreaded applications, such as web services, which require synchronization and locking mechanisms to ensure thread-safety.
//!
//! The thread-local strategy allows us to create a fast, thread-safe, and lock-free O(1) cache, while sacrificing memory.
//! As such, the cache is suitable for applications that require a high-performance and thread-safe cache, but do not require a large memory footprint.
//! To make a simple example estimation, a web service with 4 cores (4 threads) that caches 1,000,000 strings (each 128 bytes) will require about 1GB of memory. Caching 1M entries of 128 bytes each,
//! will require about 250MB of memory. When using LocalCache with 4 cores, the memory footprint will be around 1GB.
//!
//
//
use bytes::Bytes;
use serde::{de::DeserializeOwned, Serialize};
use std::cell::RefCell;

mod cache;
use cache::LRUCache;

thread_local! {
    static CACHE: RefCell<Option<LRUCache>> = RefCell::new(None);
}

pub struct LocalCache {
    capacity: usize,
    ttl: u64,
}

impl LocalCache {
    /// Creates a new LocalCache with the given capacity and ttl.
    ///
    /// # Arguments
    ///
    /// * `capacity` - The maximum number of items the cache can hold before evicting the least recently used item.
    /// * `ttl` - The time-to-live for each item in seconds. anything less than 1 means no expiration.
    ///
    /// # Example
    ///
    /// ```
    /// use local_lru::LocalCache;  
    /// use bytes::Bytes;
    /// let cache = LocalCache::new(2, 60);
    /// cache.add_item("key1", Bytes::from("value1"));
    /// assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));
    /// ```
    pub fn new(capacity: usize, ttl: u64) -> Self {
        LocalCache { capacity, ttl }
    }

    fn initialize_cache_if_none(&self) {
        CACHE.with(|cache| {
            let mut cache = cache.borrow_mut();
            if cache.is_none() {
                *cache = Some(LRUCache::new(self.capacity, self.ttl));
            }
        });
    }
    /// Gets an item from the cache. In LRU cache fetching, the item is moved to the front of the list.
    /// # Returns
    ///
    /// An Option containing the item if it exists, or None if it does not.
    pub fn get_item(&self, key: &str) -> Option<Bytes> {
        self.initialize_cache_if_none();
        CACHE.with(|cache| cache.borrow_mut().as_mut().unwrap().get_item(key))
    }

    /// Adds an item to the cache.
    /// # Arguments
    ///
    /// * `key` - The key to add the item for.
    /// * `value` - The value to add to the cache represented as `Bytes`.
    ///
    pub fn add_item(&self, key: &str, value: Bytes) {
        self.initialize_cache_if_none();
        CACHE.with(|cache| {
            cache
                .borrow_mut()
                .as_mut()
                .unwrap()
                .add_item(key.to_string(), value)
        })
    }

    /// Wrapper function to add a struct to the cache.
    /// It simple uses bincode to serialize the struct and add it to the cache as a Bytes object.
    /// # Arguments
    ///
    /// * `key` - The key to add the item for.
    /// * `value` - Any struct that implements Serialize.
    ///
    pub fn add_struct<T: Serialize>(&self, key: &str, value: T) {
        let bytes = bincode::serialize(&value).unwrap(); // TODO: handle error
        self.add_item(key, Bytes::from(bytes));
    }

    /// Wrapper function to get a struct from the cache.
    /// It uses bincode to deserialize the Bytes object back into a struct.
    /// # Arguments
    ///
    /// * `key` - The key to get the item for.
    ///
    /// # Returns
    ///
    /// An Option containing the item if it exists, or None if it does not.
    pub fn get_struct<T: DeserializeOwned>(&self, key: &str) -> Option<T> {
        let bytes = self.get_item(key)?;
        bincode::deserialize(&bytes).ok()
    }
}
#[cfg(test)]
mod tests {
    use super::*;
    use serde::Deserialize;
    use serde::Serialize;
    use std::thread::sleep;
    use std::time::Duration;

    #[test]
    fn test_capacity_based_eviction() {
        let cache = LocalCache::new(3, 60);

        cache.add_item("key1", Bytes::from("value1"));
        cache.add_item("key2", Bytes::from("value2"));
        cache.add_item("key3", Bytes::from("value3"));

        assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));
        assert_eq!(cache.get_item("key2"), Some(Bytes::from("value2")));
        assert_eq!(cache.get_item("key3"), Some(Bytes::from("value3")));

        // Adding a fourth item should evict the least recently used item (key1)
        cache.add_item("key4", Bytes::from("value4"));

        assert_eq!(cache.get_item("key1"), None);
        assert_eq!(cache.get_item("key2"), Some(Bytes::from("value2")));
        assert_eq!(cache.get_item("key3"), Some(Bytes::from("value3")));
        assert_eq!(cache.get_item("key4"), Some(Bytes::from("value4")));
    }

    #[test]
    fn test_get_item_updates_order() {
        let cache = LocalCache::new(3, 60);

        cache.add_item("key1", Bytes::from("value1"));
        cache.add_item("key2", Bytes::from("value2"));
        cache.add_item("key3", Bytes::from("value3"));

        // Access key1, making it the most recently used
        cache.get_item("key1");

        // Add a new item, which should evict the least recently used (now key2)
        cache.add_item("key4", Bytes::from("value4"));

        assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));
        assert_eq!(cache.get_item("key2"), None);
        assert_eq!(cache.get_item("key3"), Some(Bytes::from("value3")));
        assert_eq!(cache.get_item("key4"), Some(Bytes::from("value4")));
    }

    #[test]
    fn test_ttl_expiration() {
        let cache = LocalCache::new(3, 2); // TTL of 2 seconds

        cache.add_item("key1", Bytes::from("value1"));

        assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));

        // Wait for 3 seconds (longer than TTL)
        sleep(Duration::from_secs(3));

        // The item should now be expired
        assert_eq!(cache.get_item("key1"), None);
    }

    #[test]
    fn test_no_ttl_expiration() {
        let cache = LocalCache::new(3, 0); // TTL of 0 seconds means no expiration

        cache.add_item("key1", Bytes::from("value1"));

        assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));

        // Wait for 3 seconds
        sleep(Duration::from_secs(3));

        // The item should still be present as there's no TTL
        assert_eq!(cache.get_item("key1"), Some(Bytes::from("value1")));
    }

    #[test]
    fn test_add_and_get_struct() {
        #[derive(Debug, Serialize, Deserialize, PartialEq, Clone)]
        struct TestStruct {
            field1: String,
            field2: i32,
        }

        let cache = LocalCache::new(3, 60);

        let test_struct = TestStruct {
            field1: "Hello".to_string(),
            field2: 42,
        };

        // Add the struct to the cache
        cache.add_struct("test_key", test_struct.clone());

        // Retrieve the struct from the cache
        let retrieved_struct: Option<TestStruct> = cache.get_struct("test_key");

        // Assert that the retrieved struct matches the original
        assert_eq!(retrieved_struct, Some(test_struct.clone()));

        // Test with a non-existent key
        let non_existent: Option<TestStruct> = cache.get_struct("non_existent_key");
        assert_eq!(non_existent, None);
    }
}