1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
//! Routines and structures for "unrolling" a [`Bitstream`](llvm_bitstream::Bitstream)
//! into a block-and-record hierarchy.
use std::convert::{TryFrom, TryInto};
use indexmap::IndexMap;
use llvm_bitstream::parser::StreamEntry;
use llvm_bitstream::record::{Block, Record};
use llvm_bitstream::Bitstream;
use llvm_constants::IrBlockId;
use crate::block::{BlockId, BlockMapError, Identification, Module, Strtab, Symtab};
use crate::error::Error;
use crate::map::{MapCtx, Mappable};
use crate::record::RecordMapError;
/// An "unrolled" record. This is internally indistinguishable from a raw bitstream
/// [`Record`](llvm_bitstream::record::Record), but is newtyped to enforce proper
/// isolation of concerns.
#[derive(Clone, Debug)]
pub struct UnrolledRecord(Record);
impl UnrolledRecord {
/// Returns this record's code.
pub fn code(&self) -> u64 {
self.0.code
}
/// Attempt to pull a UTF-8 string from this record's fields.
///
/// Strings are always the last fields in a record, so only the start
/// index is required.
pub fn try_string(&self, idx: usize) -> Result<String, RecordMapError> {
// If our start index lies beyond the record fields or would produce
// an empty string, it's invalid.
if idx >= self.0.fields.len() - 1 {
return Err(RecordMapError::BadField(format!(
"impossible string index: {} exceeds record fields",
idx
)));
}
// Each individual field in our string must fit into a byte.
let raw = self.0.fields[idx..]
.iter()
.map(|f| u8::try_from(*f))
.collect::<Result<Vec<_>, _>>()
.map_err(|_| RecordMapError::BadField("impossible character value in string".into()))?;
// Finally, the buffer itself must decode correctly.
String::from_utf8(raw)
.map_err(|_| RecordMapError::BadField("invalid string encoding".into()))
}
/// Attempt to pull a blob of bytes from this record's fields.
///
/// Blobs are always the last fields in a record, so only the start index is required.
pub fn try_blob(&self, idx: usize) -> Result<Vec<u8>, RecordMapError> {
// If our start index lies beyond the record fields or would produce
// an empty string, it's invalid.
if idx >= self.0.fields.len() - 1 {
return Err(RecordMapError::BadField(format!(
"impossible blob index: {} exceeds record fields",
idx
)));
}
// Each individual field in our blob must fit into a byte.
self.0.fields[idx..]
.iter()
.map(|f| u8::try_from(*f))
.collect::<Result<Vec<_>, _>>()
.map_err(|_| RecordMapError::BadField("impossible byte value in blob".into()))
}
/// Returns a reference to this record's fields.
pub fn fields(&self) -> &[u64] {
&self.0.fields
}
/// Attempt to get a field from this record by index.
pub fn get_field(&self, idx: usize) -> Result<u64, RecordMapError> {
self.0.fields.get(idx).copied().ok_or_else(|| {
RecordMapError::BadField(format!("invalid field index for {:?}: {}", self, idx))
})
}
}
/// A fully unrolled block within the bitstream, with potential records
/// and sub-blocks.
#[derive(Clone, Debug)]
pub struct UnrolledBlock {
/// This block's ID.
pub id: BlockId,
/// The [`UnrolledRecord`](UnrolledRecord)s directly contained by this block.
// NOTE(ww): It would be nice if we could map this list of records by their codes,
// since that would save us some time when scanning blocks for particular
// kinds of records. Doing so correctly is tricky: even with an order-preserving
// structure like IndexMap, we'd lose the correct order as we insert each record
// into its bucket.
records: Vec<UnrolledRecord>,
/// The blocks directly contained by this block, mapped by their IDs. Like with records,
/// a block can contain multiple sub-blocks of the same ID.
blocks: IndexMap<BlockId, Vec<UnrolledBlock>>,
}
impl UnrolledBlock {
pub(self) fn new(id: u64) -> Self {
Self {
id: id.into(),
records: vec![],
// TODO(ww): Figure out a default capacity here.
blocks: IndexMap::new(),
}
}
/// Get zero or one records from this block by the given record code.
///
/// Returns an error if the block has more than one record for this code.
pub fn maybe_one_record(&self, code: u64) -> Result<Option<&UnrolledRecord>, BlockMapError> {
let records = self.records(code).collect::<Vec<_>>();
match records.len() {
0 => Ok(None),
1 => Ok(Some(records[0])),
_ => Err(BlockMapError::BlockRecordMismatch(code, self.id)),
}
}
/// Get a single record from this block by its record code.
///
/// Returns an error if the block either lacks an appropriate record or has more than one.
pub fn one_record(&self, code: u64) -> Result<&UnrolledRecord, BlockMapError> {
let records = self.records(code).collect::<Vec<_>>();
// The empty case here would indicate API misuse, since we should only
// create the vector upon inserting at least one record for a given code.
// But it doesn't hurt (much) to be cautious.
if records.is_empty() || records.len() > 1 {
return Err(BlockMapError::BlockRecordMismatch(code, self.id));
}
// Panic safety: we check for exactly one member directly above.
Ok(records[0])
}
/// Return an iterator for all records that share the given code. Records are iterated in
/// the order of insertion.
///
/// The returned iterator is empty if the block doesn't have any matching records.
pub fn records(&self, code: u64) -> impl Iterator<Item = &UnrolledRecord> + '_ {
self.records.iter().filter(move |r| r.code() == code)
}
/// Return an iterator over all records in the block, regardless of their codes. Records
/// are iterated in the order of insertion.
///
/// This is useful in contexts where the mapper's behavior does not vary significantly
/// by record code, such as within the type table mapper.
pub fn all_records(&self) -> impl Iterator<Item = &UnrolledRecord> + '_ {
self.records.iter()
}
/// Return an iterator over all sub-blocks within this block that share the given ID.
///
/// The returned iterator is empty if the block doesn't have any matching sub-blocks.
pub fn blocks(&self, id: BlockId) -> impl Iterator<Item = &UnrolledBlock> + '_ {
self.blocks.get(&id).into_iter().flatten()
}
/// Get zero or one sub-blocks from this block by the given block ID.
///
/// Returns an error if the block has more than one matching sub-block.
pub fn maybe_one_block(&self, id: BlockId) -> Result<Option<&UnrolledBlock>, BlockMapError> {
let blocks = self.blocks(id).collect::<Vec<_>>();
match blocks.len() {
0 => Ok(None),
1 => Ok(Some(blocks[0])),
_ => Err(BlockMapError::BlockBlockMismatch(id, self.id)),
}
}
/// Get a single sub-block from this block by its block ID.
///
/// Returns an error if the block either lacks an appropriate block or has more than one.
pub fn one_block(&self, id: BlockId) -> Result<&UnrolledBlock, BlockMapError> {
if let Some(block) = self.maybe_one_block(id)? {
Ok(block)
} else {
Err(BlockMapError::BlockBlockMismatch(id, self.id))
}
}
}
/// A fully unrolled bitcode structure, taken from a bitstream.
///
/// Every `UnrolledBitcode` has a list of `BitstreamModule`s that it contains, each of
/// which corresponds to a single LLVM IR module. In the simplest case, there will only be one.
#[derive(Debug)]
pub struct UnrolledBitcode {
pub(crate) modules: Vec<BitcodeModule>,
}
impl TryFrom<&[u8]> for UnrolledBitcode {
type Error = Error;
fn try_from(buf: &[u8]) -> Result<UnrolledBitcode, Self::Error> {
let (_, bitstream) = Bitstream::from(buf)?;
bitstream.try_into()
}
}
impl<T: AsRef<[u8]>> TryFrom<Bitstream<T>> for UnrolledBitcode {
type Error = Error;
fn try_from(mut bitstream: Bitstream<T>) -> Result<UnrolledBitcode, Self::Error> {
fn enter_block<T: AsRef<[u8]>>(
bitstream: &mut Bitstream<T>,
block: Block,
) -> Result<UnrolledBlock, Error> {
let mut unrolled_block = UnrolledBlock::new(block.block_id);
// Once we're in a block, we do the following:
// 1. Take records, and add them to the current unrolled block;
// 2. Take sub-blocks, and enter them, adding them to our sub-block map;
// 3. Visit the end of our own block and return so that the caller
// (which is either the bitstream context or another parent block)
// can add us to its block map.
loop {
let entry = bitstream.next().ok_or_else(|| {
Error::BadUnroll("unexpected stream end during unroll".into())
})?;
match entry? {
StreamEntry::Record(record) => {
unrolled_block.records.push(UnrolledRecord(record))
}
StreamEntry::SubBlock(block) => {
let unrolled_child = enter_block(bitstream, block)?;
unrolled_block
.blocks
.entry(unrolled_child.id)
.or_insert_with(Vec::new)
.push(unrolled_child);
}
StreamEntry::EndBlock => {
// End our current block scope.
break;
}
}
}
Ok(unrolled_block)
}
let mut partial_modules = Vec::new();
// Unrolling a bitstream into an `UnrolledBitcode` is a little involved:
//
// 1. There are multiple top-level blocks, each of which needs to be consumed.
// 2. Certain top-level blocks need to be grouped together to form a single BitcodeModule.
// 3. There can be multiple BitcodeModules-worth of top-level blocks in the stream.
loop {
// `None` means that we've exhausted the bitstream; we're done.
let entry = bitstream.next();
if entry.is_none() {
break;
}
// Take a top-level block from the stream.
let top_block = {
// Unwrap safety: we explicitly check the `None` case above.
// NOTE(ww): Other parts of the parser should be defensive against a malformed
// bitstream here, but it's difficult to represent that at the type level during unrolling.
#[allow(clippy::unwrap_used)]
let block = entry.unwrap()?.as_block().ok_or_else(|| {
Error::BadUnroll("bitstream has non-blocks at the top-level scope".into())
})?;
enter_block(&mut bitstream, block)?
};
// Our top-level block can be one of four cases, if it's valid.
//
// Handle each accordingly.
match top_block.id {
BlockId::Ir(IrBlockId::Identification) => {
// We've unrolled an IDENTIFICATION_BLOCK; this indicates the start of a new
// bitcode module. Create a fresh PartialBitcodeModule to fill in, as more
// top-level blocks become available.
partial_modules.push(PartialBitcodeModule::new(top_block));
}
BlockId::Ir(IrBlockId::Module) => {
// We've unrolled a MODULE_BLOCK; this contains the vast majority of the
// state associated with an LLVM IR module. Grab the most recent
// PartialBitcodeModule and fill it in, erroring appropriately if it already
// has a module.
//
// NOTE(ww): We could encounter a top-level sequence that looks like this:
// [IDENTIFICATION_BLOCK, IDENTIFICATION_BLOCK, MODULE_BLOCK]
// This would be malformed and in principle we should catch it here by searching
// for the first PartialBitcodeModule lacking a module instead of taking
// the most recent one, but the PartialBitcodeModule -> BitcodeModule reification
// step will take care of that for us.
let last_partial = partial_modules.last_mut().ok_or_else(|| {
Error::BadUnroll("malformed bitstream: MODULE_BLOCK with no preceding IDENTIFICATION_BLOCK".into())
})?;
match &last_partial.module {
Some(_) => {
return Err(Error::BadUnroll(
"malformed bitstream: adjacent MODULE_BLOCKs".into(),
))
}
None => last_partial.module = Some(top_block),
}
}
BlockId::Ir(IrBlockId::Strtab) => {
// We've unrolled a STRTAB_BLOCK; this contains the string table for one or
// more preceding modules. Any modules that don't already have their own string
// table are given their own copy of this one.
//
// NOTE(ww): Again, we could encounter a sequence that looks like this:
// [..., STRTAB_BLOCK, STRTAB_BLOCK]
// This actually wouldn't be malformed, but is *is* nonsense: the second
// STRTAB_BLOCK would have no effect on any BitcodeModule, since the first one
// in sequence would already have been used for every prior module.
// We don't bother catching this at the moment since LLVM's own reader doesn't
// and it isn't erroneous per se (just pointless).
for prev_partial in partial_modules
.iter_mut()
.rev()
.take_while(|p| p.strtab.is_none())
{
prev_partial.strtab = Some(top_block.clone());
}
}
BlockId::Ir(IrBlockId::Symtab) => {
// We've unrolled a SYMTAB_BLOCK; this contains the symbol table (which, in
// turn, references the string table) for one or more preceding modules. Any
// modules that don't already have their own symbol table are given their own
// copy of this one.
//
// NOTE(ww): The same nonsense layout with STRTAB_BLOCK applies here.
for prev_partial in partial_modules
.iter_mut()
.rev()
.take_while(|p| p.symtab.is_none())
{
prev_partial.symtab = Some(top_block.clone());
}
}
_ => {
return Err(Error::BadUnroll(format!(
"unexpected top-level block: {:?}",
top_block.id
)))
}
}
}
let modules = partial_modules
.into_iter()
.map(|p| p.reify())
.collect::<Result<Vec<_>, _>>()?;
let unrolled = UnrolledBitcode { modules };
Ok(unrolled)
}
}
/// An internal, partial representation of a bitcode module, used when parsing each bitcode module
/// to avoid polluting the `BitcodeModule` structure with optional types.
#[derive(Debug)]
struct PartialBitcodeModule {
identification: UnrolledBlock,
module: Option<UnrolledBlock>,
strtab: Option<UnrolledBlock>,
symtab: Option<UnrolledBlock>,
}
impl PartialBitcodeModule {
/// Create a new `PartialBitcodeModule`.
pub(self) fn new(identification: UnrolledBlock) -> Self {
Self {
identification: identification,
module: None,
strtab: None,
symtab: None,
}
}
/// Reify this `PartialBitcodeModule into a concrete `BitcodeModule`, mapping
/// each block along the way.
///
/// Returns an error if the `PartialBitcodeModule` is lacking necessary state, or if
/// block and record mapping fails for any reason.
pub(self) fn reify(self) -> Result<BitcodeModule, Error> {
let mut ctx = MapCtx::default();
// Grab the string table early, so that we can move it into our mapping context and
// use it for the remainder of the mapping phase.
let strtab = Strtab::try_map(
&self.strtab.ok_or_else(|| {
Error::BadUnroll("missing STRTAB_BLOCK for bitcode module".into())
})?,
&mut ctx,
)?;
ctx.strtab = Some(strtab);
let identification = Identification::try_map(&self.identification, &mut ctx)?;
let module = Module::try_map(
&self.module.ok_or_else(|| {
Error::BadUnroll("missing MODULE_BLOCK for bitcode module".into())
})?,
&mut ctx,
)?;
let symtab = self
.symtab
.map(|s| Symtab::try_map(&s, &mut ctx))
.transpose()?;
#[allow(clippy::unwrap_used)]
Ok(BitcodeModule {
identification: identification,
module: module,
// Unwrap safety: we unconditionally assign `strtab` to `Some(...)` above.
strtab: ctx.strtab.unwrap(),
symtab: symtab,
})
}
}
/// A `BitcodeModule` encapsulates the top-level pieces of bitstream state needed for
/// a single LLVM bitcode module: the `IDENTIFICATION_BLOCK`, the `MODULE_BLOCK` itself,
/// a `STRTAB_BLOCK`, and a `SYMTAB_BLOCK` (if the last is present). A bitstream can
/// contain multiple LLVM modules (e.g. if produced by `llvm-cat -b`), so parsing a bitstream
/// can result in multiple `BitcodeModule`s.
#[derive(Debug)]
pub struct BitcodeModule {
/// The identification block associated with this module.
pub identification: Identification,
/// The module block associated with this module.
pub module: Module,
/// The string table associated with this module.
pub strtab: Strtab,
/// The symbol table associated with this module, if it has one.
pub symtab: Option<Symtab>,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_unrolled_record_try_string() {
let record = UnrolledRecord(Record {
abbrev_id: None,
code: 0,
fields: b"\xff\xffvalid string!".iter().map(|b| *b as u64).collect(),
});
assert_eq!(record.try_string(2).unwrap(), "valid string!");
assert_eq!(record.try_string(8).unwrap(), "string!");
assert!(record.try_string(0).is_err());
assert!(record.try_string(record.0.fields.len()).is_err());
assert!(record.try_string(record.0.fields.len() - 1).is_err());
}
#[test]
fn test_unrolled_record_try_blob() {
let record = UnrolledRecord(Record {
abbrev_id: None,
code: 0,
fields: b"\xff\xffvalid string!".iter().map(|b| *b as u64).collect(),
});
assert_eq!(record.try_blob(0).unwrap(), b"\xff\xffvalid string!");
assert_eq!(record.try_blob(8).unwrap(), b"string!");
assert!(record.try_blob(record.0.fields.len()).is_err());
assert!(record.try_blob(record.0.fields.len() - 1).is_err());
}
}