1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
use crate::module::AddrSpace;
use either::Either;
use std::borrow::Borrow;
use std::collections::HashMap;
use std::fmt::{self, Display};
use std::hash::Hash;
use std::ops::Deref;
use std::sync::Arc;

/// See [LLVM 14 docs on Type System](https://releases.llvm.org/14.0.0/docs/LangRef.html#type-system)
#[derive(PartialEq, Eq, Clone, Debug, Hash)]
#[allow(non_camel_case_types)]
pub enum Type {
    /// See [LLVM 14 docs on Void Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#void-type)
    VoidType,
    /// See [LLVM 14 docs on Integer Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#integer-type)
    IntegerType { bits: u32 },
    /// See [LLVM 14 docs on Pointer Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#pointer-type)
    #[cfg(feature = "llvm-14-or-lower")]
    PointerType {
        pointee_type: TypeRef,
        addr_space: AddrSpace,
    },
    /// See [LLVM 15 docs on Pointer Type](https://releases.llvm.org/15.0.0/docs/LangRef.html#pointer-type)
    /// and [this documentation on Opaque Pointers, introduced in LLVM 15](https://releases.llvm.org/15.0.0/docs/OpaquePointers.html)
    #[cfg(feature = "llvm-15-or-greater")]
    PointerType { addr_space: AddrSpace },
    /// See [LLVM 14 docs on Floating-Point Types](https://releases.llvm.org/14.0.0/docs/LangRef.html#floating-point-types)
    FPType(FPType),
    /// See [LLVM 14 docs on Function Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#function-type)
    FuncType {
        result_type: TypeRef,
        param_types: Vec<TypeRef>,
        is_var_arg: bool,
    },
    /// Vector types (along with integer, FP, pointer, X86_MMX, and X86_AMX types) are "first class types",
    /// which means they can be produced by instructions (see [LLVM 14 docs on First Class Types](https://releases.llvm.org/14.0.0/docs/LangRef.html#first-class-types)).
    /// See [LLVM 14 docs on Vector Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#vector-type)
    VectorType {
        element_type: TypeRef,
        num_elements: usize,
        #[cfg(feature = "llvm-11-or-greater")]
        scalable: bool,
    },
    /// Struct and Array types (but not vector types) are "aggregate types" and cannot be produced by
    /// a single instruction (see [LLVM 14 docs on Aggregate Types](https://releases.llvm.org/14.0.0/docs/LangRef.html#aggregate-types)).
    /// See [LLVM 14 docs on Array Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#array-type)
    ArrayType {
        element_type: TypeRef,
        num_elements: usize,
    },
    /// The `StructType` variant is used for a "literal" (i.e., anonymous) structure type.
    /// See [LLVM 14 docs on Structure Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#structure-type)
    StructType {
        element_types: Vec<TypeRef>,
        is_packed: bool,
    },
    /// Named structure types. Note that these may be self-referential (i.e., recursive).
    /// See [LLVM 14 docs on Structure Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#structure-type)
    /// To get the actual definition of a named structure type, use `module.types.named_struct_def()`.
    NamedStructType {
        /// Name of the struct type
        name: String, // llvm-hs-pure has Name rather than String
    },
    /// See [LLVM 14 docs on X86_MMX Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#x86-mmx-type)
    X86_MMXType,
    // As of this writing, although X86_AMX type definitely exists in LLVM 12+,
    // it doesn't appear to be documented in the LangRef
    #[cfg(feature = "llvm-12-or-greater")]
    X86_AMXType,
    /// See [LLVM 14 docs on Metadata Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#metadata-type)
    MetadataType,
    /// `LabelType` is the type of [`BasicBlock`](../struct.BasicBlock.html) labels.
    /// See [LLVM 14 docs on Label Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#label-type)
    LabelType,
    /// See [LLVM 14 docs on Token Type](https://releases.llvm.org/14.0.0/docs/LangRef.html#token-type)
    TokenType,
    /// See [LLVM 16 docs on Target Extension Type](https://releases.llvm.org/16.0.0/docs/LangRef.html#target-extension-type).
    ///
    /// `TargetExtType` needs more fields, but the necessary getter functions
    /// are apparently not exposed in the LLVM C API (only the C++ API).
    /// See discussion in #39.
    #[cfg(feature = "llvm-16-or-greater")]
    TargetExtType, // TODO ideally we want something like TargetExtType { name: String, contained_types: Vec<TypeRef>, contained_ints: Vec<u32> }
}

impl Display for Type {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Type::VoidType => write!(f, "void"),
            Type::IntegerType { bits } => write!(f, "i{}", bits),
            #[cfg(feature = "llvm-14-or-lower")]
            Type::PointerType { pointee_type, .. } => write!(f, "{}*", pointee_type),
            #[cfg(feature = "llvm-15-or-greater")]
            Type::PointerType { .. } => write!(f, "ptr"),
            Type::FPType(fpt) => write!(f, "{}", fpt),
            Type::FuncType {
                result_type,
                param_types,
                is_var_arg,
            } => {
                write!(f, "{} (", result_type)?;
                for (i, param_ty) in param_types.iter().enumerate() {
                    if i == param_types.len() - 1 {
                        write!(f, "{}", param_ty)?;
                    } else {
                        write!(f, "{}, ", param_ty)?;
                    }
                }
                if *is_var_arg {
                    write!(f, ", ...")?;
                }
                write!(f, ")")?;
                Ok(())
            },
            Type::VectorType {
                element_type,
                num_elements,
                #[cfg(feature = "llvm-11-or-greater")]
                scalable,
            } => {
                #[cfg(feature = "llvm-11-or-greater")]
                if *scalable {
                    write!(f, "<vscale x {} x {}>", num_elements, element_type)
                } else {
                    write!(f, "<{} x {}>", num_elements, element_type)
                }
                #[cfg(feature = "llvm-10-or-lower")]
                write!(f, "<{} x {}>", num_elements, element_type)
            },
            Type::ArrayType {
                element_type,
                num_elements,
            } => write!(f, "[{} x {}]", num_elements, element_type),
            Type::StructType {
                element_types,
                is_packed,
            } => {
                if *is_packed {
                    write!(f, "<")?;
                }
                write!(f, "{{ ")?;
                for (i, element_ty) in element_types.iter().enumerate() {
                    if i == element_types.len() - 1 {
                        write!(f, "{}", element_ty)?;
                    } else {
                        write!(f, "{}, ", element_ty)?;
                    }
                }
                write!(f, " }}")?;
                if *is_packed {
                    write!(f, ">")?;
                }
                Ok(())
            },
            Type::NamedStructType { name } => write!(f, "%{}", name),
            Type::X86_MMXType => write!(f, "x86_mmx"),
            #[cfg(feature = "llvm-12-or-greater")]
            Type::X86_AMXType => write!(f, "x86_amx"),
            Type::MetadataType => write!(f, "metadata"),
            Type::LabelType => write!(f, "label"),
            Type::TokenType => write!(f, "token"),
            #[cfg(feature = "llvm-16-or-greater")]
            Type::TargetExtType => write!(f, "target()"),
                // someday if/when TargetExtType contains other fields, we need something like the below:
                /*
                // Name, then type parameters first then integer parameters.
                let members = [name]
                    .iter()
                    .map(|name| format!("\"{name}\""))
                    .chain(contained_types.iter().map(ToString::to_string))
                    .chain(contained_ints.iter().map(ToString::to_string))
                    .collect::<Vec<_>>()
                    .join(", ");
                write!(f, "target({members})")?;

                Ok(())
                */
        }
    }
}

/// See [LLVM 14 docs on Floating-Point Types](https://releases.llvm.org/14.0.0/docs/LangRef.html#floating-point-types)
#[derive(PartialEq, Eq, Clone, Copy, Debug, Hash)]
#[allow(non_camel_case_types)]
pub enum FPType {
    Half,
    #[cfg(feature = "llvm-11-or-greater")]
    BFloat,
    Single,
    Double,
    FP128,
    X86_FP80,
    PPC_FP128,
}

impl From<FPType> for Type {
    fn from(fpt: FPType) -> Type {
        Type::FPType(fpt)
    }
}

impl Display for FPType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            FPType::Half => write!(f, "half"),
            #[cfg(feature = "llvm-11-or-greater")]
            FPType::BFloat => write!(f, "bfloat"),
            FPType::Single => write!(f, "float"),
            FPType::Double => write!(f, "double"),
            FPType::FP128 => write!(f, "fp128"),
            FPType::X86_FP80 => write!(f, "x86_fp80"),
            FPType::PPC_FP128 => write!(f, "ppc_fp128"),
        }
    }
}

/// A `TypeRef` is a reference to a [`Type`](enum.Type.html).
/// Most importantly, it implements `AsRef<Type>` and `Deref<Target = Type>`.
/// It also has a cheap `Clone` -- only the reference is cloned, not the
/// underlying `Type`.
//
// `Arc` is used rather than `Rc` so that `Module` can remain `Sync`.
// This is important because it allows multiple threads to simultaneously access
// a single (immutable) `Module`.
#[derive(PartialEq, Eq, Clone, Debug, Hash)]
pub struct TypeRef(Arc<Type>);

impl AsRef<Type> for TypeRef {
    fn as_ref(&self) -> &Type {
        self.0.as_ref()
    }
}

impl Deref for TypeRef {
    type Target = Type;

    fn deref(&self) -> &Type {
        self.0.deref()
    }
}

impl Display for TypeRef {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", &self.0)
    }
}

impl TypeRef {
    /// For use only in this module: construct a `TypeRef` by consuming the given owned `Type`.
    /// External users should get `TypeRefs` only from the `Types` or `TypesBuilder` objects.
    fn new(ty: Type) -> Self {
        Self(Arc::new(ty))
    }
}

/// The `Typed` trait is used for anything that has a [`Type`](enum.Type.html).
pub trait Typed {
    fn get_type(&self, types: &Types) -> TypeRef;
}

impl Typed for TypeRef {
    fn get_type(&self, _types: &Types) -> TypeRef {
        self.clone()
    }
}

impl Typed for Type {
    fn get_type(&self, types: &Types) -> TypeRef {
        types.get_for_type(self)
    }
}

impl Typed for FPType {
    fn get_type(&self, types: &Types) -> TypeRef {
        types.fp(*self)
    }
}

impl<A, B> Typed for Either<A, B>
where
    A: Typed,
    B: Typed,
{
    fn get_type(&self, types: &Types) -> TypeRef {
        match self {
            Either::Left(x) => types.type_of(x),
            Either::Right(y) => types.type_of(y),
        }
    }
}

/// Holds a reference to all of the `Type`s used in the `Module`, and facilitates
/// lookups so you can get a `TypeRef` to the `Type` you want.
#[derive(Clone)]
pub(crate) struct TypesBuilder {
    /// `TypeRef` to `Type::VoidType`
    void_type: TypeRef,
    /// Map of integer size to `Type::IntegerType` of that size
    int_types: TypeCache<u32>,
    /// Map of (pointee type, address space) to the corresponding `Type::PointerType`
    #[cfg(feature = "llvm-14-or-lower")]
    pointer_types: TypeCache<(TypeRef, AddrSpace)>,
    /// Map of address space to the corresponding `Type::PointerType`
    #[cfg(feature = "llvm-15-or-greater")]
    pointer_types: TypeCache<AddrSpace>,
    /// Map of `FPType` to the corresponding `Type::FPType`
    fp_types: TypeCache<FPType>,
    /// Map of `(result_type, param_types, is_var_arg)` to the corresponding `Type::FunctionType`
    func_types: TypeCache<(TypeRef, Vec<TypeRef>, bool)>,
    /// Map of (element type, #elements, scalable) to the corresponding `Type::VectorType`
    vec_types: TypeCache<(TypeRef, usize, bool)>,
    /// Map of (element type, #elements) to the corresponding `Type::ArrayType`
    arr_types: TypeCache<(TypeRef, usize)>,
    /// Map of `(element_types, is_packed)` to the corresponding `Type::StructType`
    struct_types: TypeCache<(Vec<TypeRef>, bool)>,
    /// Map of struct name to the corresponding `Type::NamedStructType`
    named_struct_types: TypeCache<String>,
    /// Map of struct name to the corresponding `NamedStructDef`
    named_struct_defs: HashMap<String, NamedStructDef>,
    /// `TypeRef` to `Type::X86_MMXType`
    x86_mmx_type: TypeRef,
    /// `TypeRef` to `Type::X86_AMXType`
    #[cfg(feature = "llvm-12-or-greater")]
    x86_amx_type: TypeRef,
    /// `TypeRef` to `Type::MetadataType`
    metadata_type: TypeRef,
    /// `TypeRef` to `Type::LabelType`
    label_type: TypeRef,
    /// `TypeRef` to `Type::TokenType`
    token_type: TypeRef,
    /// `TypeRef` to `Type::TargetExtType`
    // someday: Map of `(name, contained_types, contained_ints)` to the corresponding `Type::TargetExtType`. See notes on Type::TargetExtType
    #[cfg(feature = "llvm-16-or-greater")]
    target_ext_type: TypeRef,
    /// internal cache of already-seen `LLVMTypeRef`s so we can quickly produce
    /// the corresponding `TypeRef` without re-parsing the type
    llvm_type_map: HashMap<LLVMTypeRef, TypeRef>,
}

impl TypesBuilder {
    pub fn new() -> Self {
        Self {
            void_type: TypeRef::new(Type::VoidType),
            int_types: TypeCache::new(),
            pointer_types: TypeCache::new(),
            fp_types: TypeCache::new(),
            func_types: TypeCache::new(),
            vec_types: TypeCache::new(),
            arr_types: TypeCache::new(),
            struct_types: TypeCache::new(),
            named_struct_types: TypeCache::new(),
            named_struct_defs: HashMap::new(),
            x86_mmx_type: TypeRef::new(Type::X86_MMXType),
            #[cfg(feature = "llvm-12-or-greater")]
            x86_amx_type: TypeRef::new(Type::X86_AMXType),
            metadata_type: TypeRef::new(Type::MetadataType),
            label_type: TypeRef::new(Type::LabelType),
            token_type: TypeRef::new(Type::TokenType),
            #[cfg(feature = "llvm-16-or-greater")]
            target_ext_type: TypeRef::new(Type::TargetExtType),
            llvm_type_map: HashMap::new(),
        }
    }

    /// Consumes the `TypesBuilder`, producing a `Types`.
    /// This should be done when no new types are expected to be added;
    /// and it allows type lookups without &mut self.
    pub fn build(self) -> Types {
        Types {
            void_type: self.void_type,
            int_types: self.int_types,
            pointer_types: self.pointer_types,
            fp_types: self.fp_types,
            func_types: self.func_types,
            vec_types: self.vec_types,
            arr_types: self.arr_types,
            struct_types: self.struct_types,
            named_struct_types: self.named_struct_types,
            named_struct_defs: self.named_struct_defs,
            x86_mmx_type: self.x86_mmx_type,
            #[cfg(feature = "llvm-12-or-greater")]
            x86_amx_type: self.x86_amx_type,
            metadata_type: self.metadata_type,
            label_type: self.label_type,
            token_type: self.token_type,
            #[cfg(feature = "llvm-16-or-greater")]
            target_ext_type: self.target_ext_type,
        }
    }
}

// some of these methods might not currently be used, that's fine
#[allow(dead_code)]
impl TypesBuilder {
    /// Get the void type
    pub fn void(&self) -> TypeRef {
        self.void_type.clone()
    }

    /// Get the integer type of the specified size (in bits)
    pub fn int(&mut self, bits: u32) -> TypeRef {
        self.int_types
            .lookup_or_insert(bits, || Type::IntegerType { bits })
    }

    /// Get the boolean type (`i1`)
    pub fn bool(&mut self) -> TypeRef {
        self.int(1)
    }

    /// Get the 8-bit integer type
    pub fn i8(&mut self) -> TypeRef {
        self.int(8)
    }

    /// Get the 16-bit integer type
    pub fn i16(&mut self) -> TypeRef {
        self.int(16)
    }

    /// Get the 32-bit integer type
    pub fn i32(&mut self) -> TypeRef {
        self.int(32)
    }

    /// Get the 64-bit integer type
    pub fn i64(&mut self) -> TypeRef {
        self.int(64)
    }

    /// Get a pointer type in the default address space (`0`)
    #[cfg(feature = "llvm-14-or-lower")]
    pub fn pointer_to(&mut self, pointee_type: TypeRef) -> TypeRef {
        self.pointer_in_addr_space(pointee_type, 0) // default to address space 0
    }
    /// Get the pointer type for the default address space (`0`)
    #[cfg(feature = "llvm-15-or-greater")]
    pub fn pointer(&mut self) -> TypeRef {
        self.pointer_in_addr_space(0) // default to address space 0
    }

    /// Get a pointer in the specified address space
    #[cfg(feature = "llvm-14-or-lower")]
    pub fn pointer_in_addr_space(
        &mut self,
        pointee_type: TypeRef,
        addr_space: AddrSpace,
    ) -> TypeRef {
        self.pointer_types
            .lookup_or_insert((pointee_type.clone(), addr_space), || Type::PointerType {
                pointee_type,
                addr_space,
            })
    }
    /// Get a pointer in the specified address space
    #[cfg(feature = "llvm-15-or-greater")]
    pub fn pointer_in_addr_space(&mut self, addr_space: AddrSpace) -> TypeRef {
        self.pointer_types
            .lookup_or_insert(addr_space, || Type::PointerType { addr_space })
    }

    /// Get a floating-point type
    pub fn fp(&mut self, fpt: FPType) -> TypeRef {
        self.fp_types.lookup_or_insert(fpt, || Type::FPType(fpt))
    }

    /// Get the single-precision floating-point type
    pub fn single(&mut self) -> TypeRef {
        self.fp(FPType::Single)
    }

    /// Get the double-precision floating-point type
    pub fn double(&mut self) -> TypeRef {
        self.fp(FPType::Double)
    }

    /// Get a function type
    pub fn func_type(
        &mut self,
        result_type: TypeRef,
        param_types: Vec<TypeRef>,
        is_var_arg: bool,
    ) -> TypeRef {
        self.func_types.lookup_or_insert(
            (result_type.clone(), param_types.clone(), is_var_arg),
            || Type::FuncType {
                result_type,
                param_types,
                is_var_arg,
            },
        )
    }

    /// Get a vector type
    #[cfg(feature = "llvm-11-or-greater")]
    pub fn vector_of(
        &mut self,
        element_type: TypeRef,
        num_elements: usize,
        scalable: bool,
    ) -> TypeRef {
        self.vec_types
            .lookup_or_insert((element_type.clone(), num_elements, scalable), || {
                Type::VectorType {
                    element_type,
                    num_elements,
                    scalable,
                }
            })
    }
    /// Get a vector type
    #[cfg(feature = "llvm-10-or-lower")]
    pub fn vector_of(&mut self, element_type: TypeRef, num_elements: usize) -> TypeRef {
        self.vec_types
            .lookup_or_insert((element_type.clone(), num_elements, false), || {
                Type::VectorType {
                    element_type,
                    num_elements,
                }
            })
    }

    /// Get an array type
    pub fn array_of(&mut self, element_type: TypeRef, num_elements: usize) -> TypeRef {
        self.arr_types
            .lookup_or_insert((element_type.clone(), num_elements), || Type::ArrayType {
                element_type,
                num_elements,
            })
    }

    /// Get a struct type
    pub fn struct_of(&mut self, element_types: Vec<TypeRef>, is_packed: bool) -> TypeRef {
        self.struct_types
            .lookup_or_insert((element_types.clone(), is_packed), || Type::StructType {
                element_types,
                is_packed,
            })
    }

    /// Get the `TypeRef` for the struct with the given name.
    ///
    /// Note that this gives a `NamedStructType`.
    /// To get the actual _definition_ of a named struct (the `NamedStructDef`),
    /// use `named_struct_def()`.
    pub fn named_struct(&mut self, name: String) -> TypeRef {
        self.named_struct_types
            .lookup_or_insert(name.clone(), || Type::NamedStructType { name })
    }

    /// Get the `NamedStructDef` for the struct with the given `name`.
    ///
    /// Panics if no definition has been added for that struct name.
    ///
    /// Note that this gives a `NamedStructDef`.
    /// To get the `NamedStructType` for a `name`, use `named_struct()`.
    pub fn named_struct_def(&self, name: &str) -> &NamedStructDef {
        self.named_struct_defs
            .get(name)
            .expect("Named struct has not been defined")
    }

    /// Add the given `NamedStructDef` as the definition of the struct with the given `name`.
    ///
    /// Panics if that name already had a definition.
    pub fn add_named_struct_def(&mut self, name: String, def: NamedStructDef) {
        match self.named_struct_defs.entry(name) {
            Entry::Occupied(_) => {
                panic!("Trying to redefine named struct");
            },
            Entry::Vacant(ventry) => {
                ventry.insert(def);
            },
        }
    }

    /// Get the X86_MMX type
    pub fn x86_mmx(&self) -> TypeRef {
        self.x86_mmx_type.clone()
    }

    /// Get the X86_AMX type
    #[cfg(feature = "llvm-12-or-greater")]
    pub fn x86_amx(&self) -> TypeRef {
        self.x86_amx_type.clone()
    }

    /// Get the metadata type
    pub fn metadata_type(&self) -> TypeRef {
        self.metadata_type.clone()
    }

    /// Get the label type
    pub fn label_type(&self) -> TypeRef {
        self.label_type.clone()
    }

    /// Get the token type
    pub fn token_type(&self) -> TypeRef {
        self.token_type.clone()
    }

    /// Get the target extension type
    #[cfg(feature = "llvm-16-or-greater")]
    pub fn target_ext_type(
        &mut self,
        // name: String, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
        // contained_types: Vec<TypeRef>, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
        // contained_ints: Vec<u32>, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
    ) -> TypeRef {
        self.target_ext_type.clone()
    }
}

#[derive(Clone, Debug, Hash)]
pub enum NamedStructDef {
    /// An opaque struct type; see [LLVM 14 docs on Opaque Structure Types](https://releases.llvm.org/14.0.0/docs/LangRef.html#t-opaque).
    Opaque,
    /// A struct type with a definition. The `TypeRef` here is guaranteed to be to a `StructType` variant.
    Defined(TypeRef),
}

/// Holds a reference to all of the `Type`s used in the `Module`, and facilitates
/// lookups so you can get a `TypeRef` to the `Type` you want.
//
// Unlike `TypesBuilder`, this is intended to be immutable, and performs type
// lookups without &mut self.
// It should be created from `TypesBuilder::build()`, and once it is built,
// it should contain all types ever used in the `Module`.
//
// That said, if you happen to want a type which wasn't encountered when parsing
// the `Module` (e.g., a pointer to some type in the `Module`, even if the
// `Module` doesn't itself create pointers to that type), it will still
// construct that `Type` and give you a `TypeRef`; you'll just be the sole owner
// of that `Type` object.
#[derive(Clone)]
pub struct Types {
    /// `TypeRef` to `Type::VoidType`
    void_type: TypeRef,
    /// Map of integer size to `Type::IntegerType` of that size
    int_types: TypeCache<u32>,
    /// Map of (pointee type, address space) to the corresponding `Type::PointerType`
    #[cfg(feature = "llvm-14-or-lower")]
    pointer_types: TypeCache<(TypeRef, AddrSpace)>,
    /// Map of address space to the corresponding `Type::PointerType`
    #[cfg(feature = "llvm-15-or-greater")]
    pointer_types: TypeCache<AddrSpace>,
    /// Map of `FPType` to the corresponding `Type::FPType`
    fp_types: TypeCache<FPType>,
    /// Map of `(result_type, param_types, is_var_arg)` to the corresponding `Type::FunctionType`
    func_types: TypeCache<(TypeRef, Vec<TypeRef>, bool)>,
    /// Map of (element type, #elements, scalable) to the corresponding `Type::VectorType`.
    /// For LLVM 10 and lower, `scalable` is always `false`.
    vec_types: TypeCache<(TypeRef, usize, bool)>,
    /// Map of (element type, #elements) to the corresponding `Type::ArrayType`
    arr_types: TypeCache<(TypeRef, usize)>,
    /// Map of `(element_types, is_packed)` to the corresponding `Type::StructType`
    struct_types: TypeCache<(Vec<TypeRef>, bool)>,
    /// Map of struct name to the corresponding `Type::NamedStructType`
    named_struct_types: TypeCache<String>,
    /// Map of struct name to the corresponding `NamedStructDef`
    named_struct_defs: HashMap<String, NamedStructDef>,
    /// `TypeRef` to `Type::X86_MMXType`
    x86_mmx_type: TypeRef,
    /// `TypeRef` to `Type::X86_AMXType`
    #[cfg(feature = "llvm-12-or-greater")]
    x86_amx_type: TypeRef,
    /// `TypeRef` to `Type::MetadataType`
    metadata_type: TypeRef,
    /// `TypeRef` to `Type::LabelType`
    label_type: TypeRef,
    /// `TypeRef` to `Type::TokenType`
    token_type: TypeRef,
    /// `TypeRef` to `Type::TargetExtType`
    #[cfg(feature = "llvm-16-or-greater")]
    target_ext_type: TypeRef,
}

impl Types {
    /// Get the type of anything that is `Typed`
    pub fn type_of<T: Typed + ?Sized>(&self, t: &T) -> TypeRef {
        t.get_type(self)
    }

    /// Get the void type
    pub fn void(&self) -> TypeRef {
        self.void_type.clone()
    }

    /// Get the integer type of the specified size (in bits)
    pub fn int(&self, bits: u32) -> TypeRef {
        self.int_types
            .lookup(&bits)
            .unwrap_or_else(|| TypeRef::new(Type::IntegerType { bits }))
    }

    /// Get the boolean type (`i1`)
    pub fn bool(&self) -> TypeRef {
        self.int(1)
    }

    /// Get the 8-bit integer type
    pub fn i8(&self) -> TypeRef {
        self.int(8)
    }

    /// Get the 16-bit integer type
    pub fn i16(&self) -> TypeRef {
        self.int(16)
    }

    /// Get the 32-bit integer type
    pub fn i32(&self) -> TypeRef {
        self.int(32)
    }

    /// Get the 64-bit integer type
    pub fn i64(&self) -> TypeRef {
        self.int(64)
    }

    /// Get a pointer type in the default address space (`0`)
    #[cfg(feature = "llvm-14-or-lower")]
    pub fn pointer_to(&self, pointee_type: TypeRef) -> TypeRef {
        self.pointer_in_addr_space(pointee_type, 0)
    }
    /// Get the pointer type for the default address space (`0`)
    #[cfg(feature = "llvm-15-or-greater")]
    pub fn pointer(&self) -> TypeRef {
        self.pointer_in_addr_space(0)
    }

    /// Get a pointer type in the specified address space
    #[cfg(feature = "llvm-14-or-lower")]
    pub fn pointer_in_addr_space(&self, pointee_type: TypeRef, addr_space: AddrSpace) -> TypeRef {
        self.pointer_types
            .lookup(&(pointee_type.clone(), addr_space))
            .unwrap_or_else(|| {
                TypeRef::new(Type::PointerType {
                    pointee_type,
                    addr_space,
                })
            })
    }
    /// Get a pointer type in the specified address space
    #[cfg(feature = "llvm-15-or-greater")]
    pub fn pointer_in_addr_space(&self, addr_space: AddrSpace) -> TypeRef {
        self.pointer_types
            .lookup(&addr_space)
            .unwrap_or_else(|| TypeRef::new(Type::PointerType { addr_space }))
    }

    /// Get a floating-point type
    pub fn fp(&self, fpt: FPType) -> TypeRef {
        self.fp_types
            .lookup(&fpt)
            .unwrap_or_else(|| TypeRef::new(Type::FPType(fpt)))
    }

    /// Get the single-precision floating-point type
    pub fn single(&self) -> TypeRef {
        self.fp(FPType::Single)
    }

    /// Get the double-precision floating-point type
    pub fn double(&self) -> TypeRef {
        self.fp(FPType::Double)
    }

    /// Get a function type
    pub fn func_type(
        &self,
        result_type: TypeRef,
        param_types: Vec<TypeRef>,
        is_var_arg: bool,
    ) -> TypeRef {
        self.func_types
            .lookup(&(result_type.clone(), param_types.clone(), is_var_arg))
            .unwrap_or_else(|| {
                TypeRef::new(Type::FuncType {
                    result_type,
                    param_types,
                    is_var_arg,
                })
            })
    }

    /// Get a vector type
    #[cfg(feature = "llvm-11-or-greater")]
    pub fn vector_of(&self, element_type: TypeRef, num_elements: usize, scalable: bool) -> TypeRef {
        self.vec_types
            .lookup(&(element_type.clone(), num_elements, scalable))
            .unwrap_or_else(|| {
                TypeRef::new(Type::VectorType {
                    element_type,
                    num_elements,
                    scalable,
                })
            })
    }
    #[cfg(feature = "llvm-10-or-lower")]
    pub fn vector_of(&self, element_type: TypeRef, num_elements: usize) -> TypeRef {
        self.vec_types
            .lookup(&(element_type.clone(), num_elements, false))
            .unwrap_or_else(|| {
                TypeRef::new(Type::VectorType {
                    element_type,
                    num_elements,
                })
            })
    }

    /// Get an array type
    pub fn array_of(&self, element_type: TypeRef, num_elements: usize) -> TypeRef {
        self.arr_types
            .lookup(&(element_type.clone(), num_elements))
            .unwrap_or_else(|| {
                TypeRef::new(Type::ArrayType {
                    element_type,
                    num_elements,
                })
            })
    }

    /// Get a struct type
    pub fn struct_of(&self, element_types: Vec<TypeRef>, is_packed: bool) -> TypeRef {
        self.struct_types
            .lookup(&(element_types.clone(), is_packed))
            .unwrap_or_else(|| {
                TypeRef::new(Type::StructType {
                    element_types,
                    is_packed,
                })
            })
    }

    /// Get the `TypeRef` for the struct with the given `name`.
    ///
    /// Note that this gives a `NamedStructType`.
    /// To get the actual _definition_ of a named struct (the `NamedStructDef`),
    /// use `named_struct_def()`.
    pub fn named_struct(&self, name: &str) -> TypeRef {
        self.named_struct_types
            .lookup(name)
            .unwrap_or_else(|| TypeRef::new(Type::NamedStructType { name: name.into() }))
    }

    /// Get the `NamedStructDef` for the struct with the given `name`, or
    /// `None` if there is no struct by that name.
    ///
    /// Note that this gives a `NamedStructDef`.
    /// To get the `NamedStructType` for a `name`, use `named_struct()`.
    pub fn named_struct_def(&self, name: &str) -> Option<&NamedStructDef> {
        self.named_struct_defs.get(name)
    }

    /// Get the names of all the named structs
    pub fn all_struct_names(&self) -> impl Iterator<Item = &String> {
        self.named_struct_defs.keys()
    }

    /// Add the given `NamedStructDef` as the definition of the struct with the given `name`.
    ///
    /// Panics if that name already had a definition.
    pub fn add_named_struct_def(&mut self, name: String, def: NamedStructDef) {
        match self.named_struct_defs.entry(name) {
            Entry::Occupied(_) => {
                panic!("Trying to redefine named struct");
            },
            Entry::Vacant(ventry) => {
                ventry.insert(def);
            },
        }
    }

    /// Remove the definition of the struct with the given `name`.
    ///
    /// Returns `true` if the definition was removed, or `false` if no definition
    /// existed.
    pub fn remove_named_struct_def(&mut self, name: &str) -> bool {
        self.named_struct_defs.remove(name).is_some()
    }

    /// Get the X86_MMX type
    pub fn x86_mmx(&self) -> TypeRef {
        self.x86_mmx_type.clone()
    }

    /// Get the X86_AMX type
    #[cfg(feature = "llvm-12-or-greater")]
    pub fn x86_amx(&self) -> TypeRef {
        self.x86_amx_type.clone()
    }

    /// Get the metadata type
    pub fn metadata_type(&self) -> TypeRef {
        self.metadata_type.clone()
    }

    /// Get the label type
    pub fn label_type(&self) -> TypeRef {
        self.label_type.clone()
    }

    /// Get the token type
    pub fn token_type(&self) -> TypeRef {
        self.token_type.clone()
    }

    /// Get the `TypeRef` for target extension type with the given
    /// name, contained types, and contained ints.
    #[cfg(feature = "llvm-16-or-greater")]
    pub fn target_ext_type(
        &self,
        // name: String, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
        // contained_types: Vec<TypeRef>, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
        // contained_ints: Vec<u32>, // TODO not exposed in the LLVM C API; see notes on Type::TargetExtType
    ) -> TypeRef {
        self.target_ext_type.clone()
    }

    /// Get a `TypeRef` for the given `Type`
    #[rustfmt::skip] // so we can keep each of the match arms more consistent with each other
    pub fn get_for_type(&self, ty: &Type) -> TypeRef {
        match ty {
            Type::VoidType => self.void(),
            Type::IntegerType{ bits } => self.int(*bits),
            #[cfg(feature = "llvm-14-or-lower")]
            Type::PointerType { pointee_type, addr_space } => {
                self.pointer_in_addr_space(pointee_type.clone(), *addr_space)
            },
            #[cfg(feature = "llvm-15-or-greater")]
            Type::PointerType { addr_space } => {
                self.pointer_in_addr_space(*addr_space)
            },
            Type::FPType(fpt) => self.fp(*fpt),
            Type::FuncType { result_type, param_types, is_var_arg } => {
                self.func_type(result_type.clone(), param_types.clone(), *is_var_arg)
            },
            #[cfg(feature="llvm-11-or-greater")]
            Type::VectorType { element_type, num_elements, scalable } => {
                self.vector_of(element_type.clone(), *num_elements, *scalable)
            },
            #[cfg(feature="llvm-10-or-lower")]
            Type::VectorType { element_type, num_elements } => {
                self.vector_of(element_type.clone(), *num_elements)
            },
            Type::ArrayType { element_type, num_elements } => {
                self.array_of(element_type.clone(), *num_elements)
            },
            Type::StructType { element_types, is_packed } => {
                self.struct_of(element_types.clone(), *is_packed)
            },
            Type::NamedStructType { name  } => self.named_struct(name),
            Type::X86_MMXType => self.x86_mmx(),
            #[cfg(feature="llvm-12-or-greater")]
            Type::X86_AMXType => self.x86_amx(),
            Type::MetadataType => self.metadata_type(),
            Type::LabelType => self.label_type(),
            Type::TokenType => self.token_type(),
            #[cfg(feature="llvm-16-or-greater")]
            Type::TargetExtType => self.target_ext_type(),
        }
    }
}

impl Types {
    /// Get a blank `Types` containing essentially no types.
    /// This function is intended only for use in testing;
    /// it's probably not useful otherwise.
    pub fn blank_for_testing() -> Self {
        TypesBuilder::new().build()
    }
}

#[derive(Clone, Debug)]
struct TypeCache<K: Eq + Hash + Clone> {
    map: HashMap<K, TypeRef>,
}

#[allow(dead_code)]
impl<K: Eq + Hash + Clone> TypeCache<K> {
    fn new() -> Self {
        Self {
            map: HashMap::new(),
        }
    }

    /// Get a `TypeRef` to the `Type` with the given key,
    /// or `None` if the `Type` is not present.
    fn lookup<Q: ?Sized>(&self, key: &Q) -> Option<TypeRef>
    where
        K: Borrow<Q>,
        Q: Hash + Eq,
    {
        self.map.get(key).cloned()
    }

    /// Get a `TypeRef` to the `Type` with the given key.
    /// The `if_missing` function or closure will be called to create that `Type`
    /// if it hasn't been created yet.
    fn lookup_or_insert(&mut self, key: K, if_missing: impl FnOnce() -> Type) -> TypeRef {
        self.map
            .entry(key)
            .or_insert_with(|| TypeRef::new(if_missing()))
            .clone()
    }

    /// Is a `Type` for the given key currently in the cache?
    fn contains_key(&self, key: &K) -> bool {
        self.map.contains_key(key)
    }
}

// ********* //
// from_llvm //
// ********* //

use crate::from_llvm::*;
use crate::llvm_sys::*;
use llvm_sys::LLVMTypeKind;
use std::collections::hash_map::Entry;

impl TypesBuilder {
    pub(crate) fn type_from_llvm_ref(&mut self, ty: LLVMTypeRef) -> TypeRef {
        if let Some(typeref) = self.llvm_type_map.get(&ty) {
            return typeref.clone();
        }
        let typeref = self.parse_type_from_llvm_ref(ty);
        self.llvm_type_map.insert(ty, typeref.clone());
        typeref
    }

    fn parse_type_from_llvm_ref(&mut self, ty: LLVMTypeRef) -> TypeRef {
        let kind = unsafe { LLVMGetTypeKind(ty) };
        match kind {
            LLVMTypeKind::LLVMVoidTypeKind => self.void(),
            LLVMTypeKind::LLVMIntegerTypeKind => self.int(unsafe { LLVMGetIntTypeWidth(ty) }),
            #[cfg(feature = "llvm-14-or-lower")]
            LLVMTypeKind::LLVMPointerTypeKind => {
                let pointee_type = self.type_from_llvm_ref(unsafe { LLVMGetElementType(ty) });
                self.pointer_in_addr_space(pointee_type, unsafe { LLVMGetPointerAddressSpace(ty) })
            },
            #[cfg(feature = "llvm-15-or-greater")]
            LLVMTypeKind::LLVMPointerTypeKind => {
                self.pointer_in_addr_space(unsafe { LLVMGetPointerAddressSpace(ty) })
            },
            LLVMTypeKind::LLVMArrayTypeKind => {
                let element_type = self.type_from_llvm_ref(unsafe { LLVMGetElementType(ty) });
                
                // LLVMGetArrayLength2 was added in LLVM-17: the old function still exists there,
                // but is deprecated. The parameters are the same, but the return type is changed
                // from c_uint to u64
                #[cfg(feature = "llvm-16-or-lower")]
                let array_len = unsafe { LLVMGetArrayLength(ty) as usize };
                #[cfg(feature = "llvm-17-or-greater")]
                let array_len = unsafe { LLVMGetArrayLength2(ty) as usize };
                
                self.array_of(element_type, array_len)
            },
            LLVMTypeKind::LLVMVectorTypeKind => {
                let element_type = self.type_from_llvm_ref(unsafe { LLVMGetElementType(ty) });
                #[cfg(feature = "llvm-11-or-greater")]
                let ret = self.vector_of(
                    element_type,
                    unsafe { LLVMGetVectorSize(ty) as usize },
                    false,
                );
                #[cfg(feature = "llvm-10-or-lower")]
                let ret = self.vector_of(element_type, unsafe { LLVMGetVectorSize(ty) as usize });
                ret
            },
            #[cfg(feature = "llvm-11-or-greater")]
            LLVMTypeKind::LLVMScalableVectorTypeKind => {
                let element_type = self.type_from_llvm_ref(unsafe { LLVMGetElementType(ty) });
                self.vector_of(
                    element_type,
                    unsafe { LLVMGetVectorSize(ty) as usize },
                    true,
                )
            },
            LLVMTypeKind::LLVMStructTypeKind => {
                let name = if unsafe { LLVMIsLiteralStruct(ty) } != 0 {
                    None
                } else {
                    unsafe { get_struct_name(ty) }
                };

                match name {
                    Some(s) if !s.is_empty() => {
                        if self.named_struct_types.contains_key(&s) {
                            // already defined: return the NamedStructType and don't change the definition
                            self.named_struct(s)
                        } else if unsafe { LLVMIsOpaqueStruct(ty) } != 0 {
                            // add the definition as opaque
                            self.add_named_struct_def(s.clone(), NamedStructDef::Opaque);
                            // return the NamedStructType
                            self.named_struct(s)
                        } else {
                            // add the NamedStructType first, so that the call to struct_type_from_llvm_ref will terminate
                            let named_struct_typeref = self.named_struct(s.clone());
                            // now compute the actual struct type. Any self-references will point to the NamedStructType we just created
                            let actual_struct_type = self.struct_type_from_llvm_ref(ty);
                            // add this definition for the named struct
                            self.add_named_struct_def(
                                s,
                                NamedStructDef::Defined(actual_struct_type),
                            );
                            // And now we return the NamedStructType
                            named_struct_typeref
                        }
                    },
                    _ => self.struct_type_from_llvm_ref(ty),
                }
            },
            LLVMTypeKind::LLVMFunctionTypeKind => {
                let result_type = self.type_from_llvm_ref(unsafe { LLVMGetReturnType(ty) });
                let param_types = {
                    let num_types = unsafe { LLVMCountParamTypes(ty) };
                    let mut types: Vec<LLVMTypeRef> = Vec::with_capacity(num_types as usize);
                    unsafe {
                        LLVMGetParamTypes(ty, types.as_mut_ptr());
                        types.set_len(num_types as usize);
                    };
                    types
                        .into_iter()
                        .map(|t| self.type_from_llvm_ref(t))
                        .collect()
                };
                self.func_type(
                    result_type,
                    param_types,
                    unsafe { LLVMIsFunctionVarArg(ty) } != 0,
                )
            },
            LLVMTypeKind::LLVMHalfTypeKind => self.fp(FPType::Half),
            #[cfg(feature = "llvm-11-or-greater")]
            LLVMTypeKind::LLVMBFloatTypeKind => self.fp(FPType::BFloat),
            LLVMTypeKind::LLVMFloatTypeKind => self.fp(FPType::Single),
            LLVMTypeKind::LLVMDoubleTypeKind => self.fp(FPType::Double),
            LLVMTypeKind::LLVMFP128TypeKind => self.fp(FPType::FP128),
            LLVMTypeKind::LLVMX86_FP80TypeKind => self.fp(FPType::X86_FP80),
            LLVMTypeKind::LLVMPPC_FP128TypeKind => self.fp(FPType::PPC_FP128),
            LLVMTypeKind::LLVMX86_MMXTypeKind => self.x86_mmx(),
            #[cfg(feature = "llvm-12-or-greater")]
            LLVMTypeKind::LLVMX86_AMXTypeKind => self.x86_amx(),
            LLVMTypeKind::LLVMMetadataTypeKind => self.metadata_type(),
            LLVMTypeKind::LLVMLabelTypeKind => self.label_type(),
            LLVMTypeKind::LLVMTokenTypeKind => self.token_type(),
            #[cfg(feature = "llvm-16-or-greater")]
            LLVMTypeKind::LLVMTargetExtTypeKind => self.target_ext_type(),
        }
    }

    /// creates an actual `StructType`, regardless of whether the struct is named or not
    ///
    /// Caller is responsible for ensuring that `ty` is not an opaque struct type
    fn struct_type_from_llvm_ref(&mut self, ty: LLVMTypeRef) -> TypeRef {
        if unsafe { LLVMIsOpaqueStruct(ty) } != 0 {
            panic!(
                "struct_type_from_llvm_ref: shouldn't pass an opaque struct type to this function"
            );
        }
        let element_types = {
            let num_types = unsafe { LLVMCountStructElementTypes(ty) };
            let mut types: Vec<LLVMTypeRef> = Vec::with_capacity(num_types as usize);
            unsafe {
                LLVMGetStructElementTypes(ty, types.as_mut_ptr());
                types.set_len(num_types as usize);
            };
            types
                .into_iter()
                .map(|t| self.type_from_llvm_ref(t))
                .collect()
        };
        self.struct_of(element_types, unsafe { LLVMIsPackedStruct(ty) } != 0)
    }
}