llms_from_scratch_rs/exercises/
ch06.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! Exercises from Chapter 6

use crate::Exercise;
use anyhow::Result;

/// # Increasing the context length
///
/// #### Id
/// 6.1
///
/// #### CLI command
/// ```sh
/// # without cuda
/// cargo run exercise 6.1
///
/// # with cuda
/// cargo run --features cuda exercise 6.1
/// ```
pub struct X1;

impl Exercise for X1 {
    fn name(&self) -> String {
        String::from("6.1")
    }

    fn title(&self) -> String {
        String::from("Increasing the context length")
    }

    fn statement(&self) -> String {
        let stmt = "Pad the inputs to the maximum number of tokens the model \
        supports and observe how it affects the predictive performance.";
        stmt.to_string()
    }

    fn main(&self) -> Result<()> {
        use crate::listings::{
            ch04::Config,
            ch06::{
                calc_accuracy_loader, download_and_load_gpt2, modify_out_head_for_classification,
                train_classifier_simple, SpamDataLoader, SpamDatasetBuilder, HF_GPT2_MODEL_ID,
            },
        };
        use anyhow::anyhow;
        use candle_core::{DType, Device, Var};
        use candle_nn::{AdamW, Optimizer, ParamsAdamW, VarBuilder, VarMap};
        use std::ops::Not;
        use std::path::Path;
        use tiktoken_rs::get_bpe_from_model;

        println!("Creating train, val, test datasets");
        // create datasets
        let tokenizer = get_bpe_from_model("gpt2")?;
        let max_length = Some(512_usize);

        let train_path = Path::new("data").join("train.parquet");
        if train_path.exists().not() {
            return Err(anyhow!(
                "Missing 'data/train.parquet' file. Please run EG 06.04."
            ));
        }
        let train_dataset = SpamDatasetBuilder::new(&tokenizer)
            .load_data_from_parquet(train_path)
            .max_length(max_length)
            .build();
        println!(
            "...train dataset max length: {}",
            train_dataset.max_length()
        );

        let val_path = Path::new("data").join("validation.parquet");
        if val_path.exists().not() {
            return Err(anyhow!(
                "Missing 'data/validation.parquet' file. Please run EG 06.04."
            ));
        }
        let val_dataset = SpamDatasetBuilder::new(&tokenizer)
            .load_data_from_parquet(val_path)
            .max_length(max_length)
            .build();
        println!("...val dataset max length: {}", val_dataset.max_length());

        let test_path = Path::new("data").join("test.parquet");
        if test_path.exists().not() {
            return Err(anyhow!(
                "Missing 'data/test.parquet' file. Please run EG 06.04."
            ));
        }
        let test_dataset = SpamDatasetBuilder::new(&tokenizer)
            .load_data_from_parquet(test_path)
            .max_length(max_length)
            .build();
        println!("...test dataset max length: {}", test_dataset.max_length());

        // create loaders
        let batch_size = 2_usize;
        let train_loader = SpamDataLoader::new(train_dataset, batch_size, true, true);
        let val_loader = SpamDataLoader::new(val_dataset, batch_size, false, false);
        let test_loader = SpamDataLoader::new(test_dataset, batch_size, false, false);

        // print total number of batches in each data loader
        println!("...{:?} training batches", train_loader.len());
        println!("...{:?} validation batches", val_loader.len());
        println!("...{:?} test batches", test_loader.len());

        // get model
        println!("Loading pre-trained GPT-2 and modifying prediction head");
        let mut cfg = Config::gpt2_124m();
        cfg.qkv_bias = true;
        let varmap = VarMap::new();
        let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::cuda_if_available(0)?);
        let mut model = download_and_load_gpt2(&varmap, vb.pp("model"), cfg, HF_GPT2_MODEL_ID)?;
        modify_out_head_for_classification(&mut model, cfg, 2_usize, &varmap, vb.pp("model"))?;

        // train model
        // trainable: last trf block, final layer norm, classification head
        let mut training_vars: Vec<Var> = vec![];
        let tensor_data = varmap.data().lock().unwrap();
        let var_names: Vec<&String> = tensor_data
            .keys()
            .filter(|k| k.contains("final_norm") || k.contains("out_head") || k.contains("trf.11"))
            .collect();
        for var_name in var_names.into_iter() {
            let var = tensor_data.get(var_name).unwrap();
            training_vars.push(var.clone());
        }
        drop(tensor_data);

        let optimizer = AdamW::new(
            training_vars,
            ParamsAdamW {
                lr: 5e-5,
                weight_decay: 0.1,
                ..Default::default()
            },
        )?;

        println!("Fine-tuning GPT2 on spam training dataset");
        let (eval_freq, eval_iter, num_epochs) = (50_usize, 1_usize, 2_usize);
        let _ = train_classifier_simple(
            &model,
            &train_loader,
            &val_loader,
            optimizer,
            vb.device(),
            num_epochs,
            eval_freq,
            eval_iter,
            None,
        );

        println!("Computing performance metrics");
        // compute accuracies
        let num_batches = None;
        let train_accuracy =
            calc_accuracy_loader(&train_loader, &model, vb.device(), num_batches, None)?;
        let val_accuracy =
            calc_accuracy_loader(&val_loader, &model, vb.device(), num_batches, None)?;
        let test_accuracy =
            calc_accuracy_loader(&test_loader, &model, vb.device(), num_batches, None)?;

        println!("Training accuracy: {}", train_accuracy);
        println!("Validation accuracy: {}", val_accuracy);
        println!("Test accuracy: {}", test_accuracy);

        Ok(())
    }
}

/// # Fine-tuning the whole model
///
/// #### Id
/// 6.2
///
/// #### CLI command
/// ```sh
/// # without cuda
/// cargo run exercise 6.2
///
/// # with cuda
/// cargo run --features cuda exercise 6.2
/// ```
pub struct X2;

impl Exercise for X2 {
    fn name(&self) -> String {
        "6.2".to_string()
    }

    fn title(&self) -> String {
        "Fine-tuning the whole model".to_string()
    }

    fn statement(&self) -> String {
        let stmt = "Instead of fine-tuning just the final transformer \
        block, fine-tune the entire model and assess the effect on predictive \
        performance.";
        stmt.to_string()
    }

    fn main(&self) -> Result<()> {
        use crate::listings::{
            ch04::Config,
            ch06::{
                calc_accuracy_loader, download_and_load_gpt2, modify_out_head_for_classification,
                train_classifier_simple, HF_GPT2_MODEL_ID,
            },
        };
        use candle_core::{DType, Device};
        use candle_nn::{AdamW, Optimizer, ParamsAdamW, VarBuilder, VarMap};

        // get gpt model with classification head
        let mut cfg = Config::gpt2_124m();
        cfg.qkv_bias = true;
        let varmap = VarMap::new();
        let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::cuda_if_available(0)?);
        let mut model = download_and_load_gpt2(&varmap, vb.pp("model"), cfg, HF_GPT2_MODEL_ID)?;
        modify_out_head_for_classification(&mut model, cfg, 2_usize, &varmap, vb.pp("model"))?;

        // get data loaders
        let eg06 = crate::examples::ch06::EG06; // re-use
        let (train_loader, val_loader, test_loader) = eg06.main_with_return(false)?;

        // trainable params and optimizer
        let optimizer = AdamW::new(
            varmap.all_vars(), // train on all vars
            ParamsAdamW {
                lr: 5e-5,
                weight_decay: 0.1,
                ..Default::default()
            },
        )?;

        println!("Fine-tuning ENTIRE GPT2 on spam training dataset");
        let (eval_freq, eval_iter, num_epochs) = (50_usize, 5_usize, 5_usize);
        let _ = train_classifier_simple(
            &model,
            &train_loader,
            &val_loader,
            optimizer,
            vb.device(),
            num_epochs,
            eval_freq,
            eval_iter,
            None,
        );

        println!("Computing performance metrics");
        // compute accuracies
        let num_batches = None;
        let train_accuracy =
            calc_accuracy_loader(&train_loader, &model, vb.device(), num_batches, None)?;
        let val_accuracy =
            calc_accuracy_loader(&val_loader, &model, vb.device(), num_batches, None)?;
        let test_accuracy =
            calc_accuracy_loader(&test_loader, &model, vb.device(), num_batches, None)?;

        println!("Training accuracy: {}", train_accuracy);
        println!("Validation accuracy: {}", val_accuracy);
        println!("Test accuracy: {}", test_accuracy);

        Ok(())
    }
}

/// # Fine-tuning the first vs. last token
///
/// #### Id
/// 6.3
///
/// #### CLI command
/// ```sh
/// # without cuda
/// cargo run exercise 6.3
///
/// # with cuda
/// cargo run --features cuda exercise 6.3
/// ```
pub struct X3;

impl Exercise for X3 {
    fn name(&self) -> String {
        "6.3".to_string()
    }

    fn title(&self) -> String {
        "Fine-tuning the first vs. last token".to_string()
    }

    fn statement(&self) -> String {
        let stmt = "Try fine-tuning the first output token. Notice the \
        changes in predictive performance compared to fine-tuning the last \
        output token.";
        stmt.to_string()
    }

    fn main(&self) -> Result<()> {
        use crate::listings::{
            ch04::Config,
            ch06::{
                calc_accuracy_loader, download_and_load_gpt2, modify_out_head_for_classification,
                train_classifier_simple, HF_GPT2_MODEL_ID,
            },
        };
        use candle_core::{DType, Device, Var};
        use candle_nn::{AdamW, Optimizer, ParamsAdamW, VarBuilder, VarMap};

        // get gpt model with classification head
        let mut cfg = Config::gpt2_124m();
        cfg.qkv_bias = true;
        let varmap = VarMap::new();
        let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::cuda_if_available(0)?);
        let mut model = download_and_load_gpt2(&varmap, vb.pp("model"), cfg, HF_GPT2_MODEL_ID)?;
        modify_out_head_for_classification(&mut model, cfg, 2_usize, &varmap, vb.pp("model"))?;

        // get data loaders
        let eg06 = crate::examples::ch06::EG06; // re-use
        let (train_loader, val_loader, test_loader) = eg06.main_with_return(false)?;

        // trainable params and optimizer
        // trainable: last trf block, final layer norm, classification head
        let mut training_vars: Vec<Var> = vec![];
        let tensor_data = varmap.data().lock().unwrap();
        let var_names: Vec<&String> = tensor_data
            .keys()
            .filter(|k| k.contains("final_norm") || k.contains("out_head") || k.contains("trf.11"))
            .collect();
        for var_name in var_names.into_iter() {
            let var = tensor_data.get(var_name).unwrap();
            training_vars.push(var.clone());
        }
        drop(tensor_data);

        let optimizer = AdamW::new(
            training_vars,
            ParamsAdamW {
                lr: 5e-5,
                weight_decay: 0.1,
                ..Default::default()
            },
        )?;

        println!("Fine-tuning GPT2 on spam training dataset using first-token");
        let (eval_freq, eval_iter, num_epochs) = (50_usize, 5_usize, 5_usize);
        let custom_pred_token_index = Some(0_usize); // use the first token!
        let _ = train_classifier_simple(
            &model,
            &train_loader,
            &val_loader,
            optimizer,
            vb.device(),
            num_epochs,
            eval_freq,
            eval_iter,
            custom_pred_token_index,
        );

        println!("Computing performance metrics");
        // compute accuracies
        let num_batches = None;
        let train_accuracy = calc_accuracy_loader(
            &train_loader,
            &model,
            vb.device(),
            num_batches,
            custom_pred_token_index,
        )?;
        let val_accuracy = calc_accuracy_loader(
            &val_loader,
            &model,
            vb.device(),
            num_batches,
            custom_pred_token_index,
        )?;
        let test_accuracy = calc_accuracy_loader(
            &test_loader,
            &model,
            vb.device(),
            num_batches,
            custom_pred_token_index,
        )?;

        println!("Training accuracy: {}", train_accuracy);
        println!("Validation accuracy: {}", val_accuracy);
        println!("Test accuracy: {}", test_accuracy);

        Ok(())
    }
}