1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
//! Flexible library developed for creating and managing coherent narratives which leverage LLMs
//! (Large Language Models) to generate dynamic responses.
//!
//! Built based on [OpenAI's recommended tactics](https://platform.openai.com/docs/guides/gpt-best-practices/tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue),
//! LLM Weaver facilitates extended interactions with any LLM, seamlessly handling conversations
//! that exceed a model's maximum context token limitation.
//!
//! [`Loom`] is the core of this library. It prompts the configured LLM and stores the message
//! history as [`TapestryFragment`] instances. This trait is highly configurable through the
//! [`Config`] trait to support a wide range of use cases.
//!
//! # Nomenclature
//!
//! - **Tapestry**: A collection of [`TapestryFragment`] instances.
//! - **TapestryFragment**: A single part of a conversation containing a list of messages along with
//! other metadata.
//! - **ContextMessage**: Represents a single message in a [`TapestryFragment`] instance.
//! - **Loom**: The machine that drives all of the core methods that should be used across any
//! service that needs to prompt LLM and receive a response.
//! - **LLM**: Language Model.
//!
//! # Architecture
//!
//! Please refer to the [`architecture::Diagram`] for a visual representation of the core
//! components of this library.
//!
//! # Usage
//!
//! You must implement the [`Config`] trait, which defines the necessary types and methods needed by
//! [`Loom`].
//!
//! This library uses Redis as the default storage backend for storing [`TapestryFragment`]. It is
//! expected that a Redis instance is running and that the following environment variables are set:
//!
//! - `REDIS_PROTOCOL`
//! - `REDIS_HOST`
//! - `REDIS_PORT`
//! - `REDIS_PASSWORD`
//!
//! Should there be a need to integrate a distinct storage backend, you have the flexibility to
//! create a custom handler by implementing the [`TapestryChestHandler`] trait and injecting it
//! into the [`Config::Chest`] associated type.
#![feature(async_closure)]
#![feature(associated_type_defaults)]
#![feature(more_qualified_paths)]
#![feature(const_option)]
#![feature(anonymous_lifetime_in_impl_trait)]
#![feature(once_cell_try)]
use std::{
fmt::{Debug, Display},
marker::PhantomData,
str::FromStr,
};
use async_trait::async_trait;
pub use bounded_integer::BoundedU8;
use num_traits::{
CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, SaturatingAdd, SaturatingMul,
SaturatingSub, ToPrimitive, Unsigned,
};
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use tracing::trace;
pub mod architecture;
pub mod loom;
pub mod storage;
pub mod types;
#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
pub use storage::TapestryChestHandler;
use types::{LoomError, SummaryModelTokens, WeaveError};
use crate::types::{PromptModelTokens, WrapperRole};
pub type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
/// Represents a unique identifier for any arbitrary entity.
///
/// This trait provides a method for generating a standardized key, which can be utilized across
/// various implementations in the library, such as the [`TapestryChest`] implementation for storing
/// keys in redis using the `base_key` method.
///
/// ```ignore
/// use loom::{TapestryId, Get};
/// use std::fmt::{Debug, Display};
///
/// struct MyTapestryId {
/// id: String,
/// sub_id: String,
/// // ...
/// }
///
/// impl TapestryId for MyTapestryId {
/// fn base_key(&self) -> String {
/// format!("{}:{}", self.id, self.sub_id)
/// }
/// }
/// ```
pub trait TapestryId: Debug + Clone + Send + Sync + 'static {
/// Returns the base key.
///
/// This method should produce a unique string identifier, that will serve as a key for
/// associated objects or data within [`TapestryChestHandler`] implementations.
fn base_key(&self) -> String;
}
#[derive(Debug)]
pub struct LlmConfig<T: Config, L: Llm<T>> {
pub model: L,
pub params: L::Parameters,
}
#[async_trait]
pub trait Llm<T: Config>:
Default + Sized + PartialEq + Eq + Clone + Debug + Copy + Send + Sync
{
/// Token to word ratio.
///
/// Defaults to `75%`
const TOKEN_WORD_RATIO: BoundedU8<0, 100> = BoundedU8::new(75).unwrap();
/// Tokens are an LLM concept which represents pieces of words. For example, each ChatGPT token
/// represents roughly 75% of a word.
///
/// This type is used primarily for tracking the number of tokens in a [`TapestryFragment`] and
/// counting the number of tokens in a string.
///
/// This type is configurable to allow for different types of tokens to be used. For example,
/// [`u16`] can be used to represent the number of tokens in a string.
type Tokens: Copy
+ ToString
+ FromStr
+ Display
+ Debug
+ ToString
+ Serialize
+ DeserializeOwned
+ Default
+ TryFrom<usize>
+ Unsigned
+ FromPrimitive
+ ToPrimitive
+ std::iter::Sum
+ CheckedAdd
+ CheckedSub
+ SaturatingAdd
+ SaturatingSub
+ SaturatingMul
+ CheckedDiv
+ CheckedMul
+ Ord
+ Sync
+ Send;
/// Type representing the prompt request.
type Request: Clone + From<ContextMessage<T>> + Display + Send;
/// Type representing the response to a prompt.
type Response: Clone + Into<Option<String>> + Send;
/// Type representing the parameters for a prompt.
type Parameters: Debug + Clone + Send + Sync;
/// The maximum number of tokens that can be processed at once by an LLM model.
fn max_context_length(&self) -> Self::Tokens;
/// Get the model name.
///
/// This is used for logging purposes but also can be used to fetch a specific model based on
/// `&self`. For example, the model passed to [`Loom::weave`] can be represented as an enum with
/// a multitude of variants, each representing a different model.
fn name(&self) -> &'static str;
/// Alias for the model.
///
/// Can be used for any unforseen use cases where the model name is not sufficient.
fn alias(&self) -> &'static str;
/// Calculates the number of tokens in a string.
///
/// This may vary depending on the type of tokens used by the LLM. In the case of ChatGPT, can be calculated using the [tiktoken-rs](https://github.com/zurawiki/tiktoken-rs#counting-token-length) crate.
fn count_tokens(content: &str) -> Result<Self::Tokens>;
/// Prompt LLM with the supplied messages and parameters.
async fn prompt(
&self,
is_summarizing: bool,
prompt_tokens: Self::Tokens,
msgs: Vec<Self::Request>,
params: &Self::Parameters,
max_tokens: Self::Tokens,
) -> Result<Self::Response>;
/// Compute cost of a message based on model.
fn compute_cost(&self, prompt_tokens: Self::Tokens, response_tokens: Self::Tokens) -> f64;
/// Calculate the upperbound of tokens allowed for the current [`Config::PromptModel`] before a
/// summary is generated.
///
/// This is calculated by multiplying the maximum context length (tokens) for the current
/// [`Config::PromptModel`] by the [`Config::TOKEN_THRESHOLD_PERCENTILE`] and dividing by 100.
fn get_max_prompt_token_limit(&self) -> Self::Tokens {
let max_context_length = self.max_context_length();
let token_threshold = Self::Tokens::from_u8(T::TOKEN_THRESHOLD_PERCENTILE.get()).unwrap();
let tokens = match max_context_length.checked_mul(&token_threshold) {
Some(tokens) => tokens,
None => max_context_length,
};
tokens.checked_div(&Self::Tokens::from_u8(100).unwrap()).unwrap()
}
/// Get optional max completion token limit.
fn get_max_completion_token_limit(&self) -> Option<Self::Tokens> {
None
}
/// [`ContextMessage`]s to [`Llm::Request`] conversion.
fn ctx_msgs_to_prompt_requests(&self, msgs: &[ContextMessage<T>]) -> Vec<Self::Request> {
msgs.iter().map(|m| m.clone().into()).collect()
}
/// Convert tokens to words.
///
/// In the case of ChatGPT, each token represents roughly 75% of a word.
fn convert_tokens_to_words(&self, tokens: Self::Tokens) -> Self::Tokens {
tokens.saturating_mul(&Self::Tokens::from_u8(Self::TOKEN_WORD_RATIO.get()).unwrap()) /
Self::Tokens::from_u8(100).unwrap()
}
}
/// A trait consisting of the main configuration needed to implement [`Loom`].
#[async_trait]
pub trait Config: Debug + Sized + Clone + Default + Send + Sync + 'static {
/// Number between 0 and 100. Represents the percentile of the maximum number of tokens allowed
/// for the current [`Config::PromptModel`] before a summary is generated.
///
/// Defaults to `85%`
const TOKEN_THRESHOLD_PERCENTILE: BoundedU8<0, 100> = BoundedU8::new(85).unwrap();
/// Ensures that the maximum completion tokens is at least the minimum response length.
///
/// If the maximum completion tokens is less than the minimum response length, a summary
/// will be generated and a new tapestry fragment will be created.
const MINIMUM_RESPONSE_LENGTH: u64;
/// The LLM to use for generating responses to prompts.
type PromptModel: Llm<Self>;
/// The LLM to use for generating summaries of the current [`TapestryFragment`] instance.
///
/// This is separate from [`Config::PromptModel`] to allow for a larger model to be used for
/// generating summaries.
type SummaryModel: Llm<Self>;
/// Storage handler interface for storing and retrieving tapestry fragments.
///
/// You can optionally enable the `redis` or `rocksdb` features to use the default storage
/// implementations for these storage backends.
type Chest: TapestryChestHandler<Self>;
/// Convert [`Config::PromptModel`] to [`Config::SummaryModel`] tokens.
fn convert_prompt_tokens_to_summary_model_tokens(
tokens: PromptModelTokens<Self>,
) -> SummaryModelTokens<Self>;
}
/// Context message that represent a single message in a [`TapestryFragment`] instance.
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct ContextMessage<T: Config> {
pub role: WrapperRole,
pub content: String,
pub account_id: Option<String>,
pub timestamp: String,
_phantom: PhantomData<T>,
}
impl<T: Config> ContextMessage<T> {
/// Create a new `ContextMessage` instance.
pub fn new(
role: WrapperRole,
content: String,
account_id: Option<String>,
timestamp: String,
) -> Self {
Self { role, content, account_id, timestamp, _phantom: PhantomData }
}
}
/// Represents a single part of a conversation containing a list of messages along with other
/// metadata.
///
/// LLM can only hold a limited amount of tokens in a the entire message history/context.
/// The total number of `context_tokens` is tracked when [`Loom::weave`] is executed and if it
/// exceeds the maximum number of tokens allowed for the current GPT [`Config::PromptModel`], then a
/// summary is generated and a new [`TapestryFragment`] instance is created.
#[derive(Debug, Serialize, Deserialize, Default, PartialEq, Clone)]
pub struct TapestryFragment<T: Config> {
/// Total number of _GPT tokens_ in the `context_messages`.
pub context_tokens: <T::PromptModel as Llm<T>>::Tokens,
/// List of [`ContextMessage`]s that represents the message history.
pub context_messages: Vec<ContextMessage<T>>,
}
impl<T: Config> TapestryFragment<T> {
fn new() -> Self {
Self::default()
}
/// Add a [`ContextMessage`] to the `context_messages` list.
///
/// Also increments the `context_tokens` by the number of tokens in the message.
fn push_message(&mut self, msg: ContextMessage<T>) -> Result<()> {
let tokens = T::PromptModel::count_tokens(&msg.content)?;
let new_token_count = self.context_tokens.checked_add(&tokens).ok_or_else(|| {
LoomError::from(WeaveError::BadConfig(
"Number of tokens exceeds max tokens for model".to_string(),
))
})?;
trace!("Pushing message: {:?}, new token count: {}", msg, new_token_count);
self.context_tokens = new_token_count;
self.context_messages.push(msg);
Ok(())
}
/// Add a [`ContextMessage`] to the `context_messages` list.
///
/// Also increments the `context_tokens` by the number of tokens in the message.
fn extend_messages(&mut self, msgs: Vec<ContextMessage<T>>) -> Result<()> {
let total_new_tokens = msgs
.iter()
.map(|m| T::PromptModel::count_tokens(&m.content).unwrap())
.collect::<Vec<_>>();
let sum: PromptModelTokens<T> = total_new_tokens
.iter()
.fold(PromptModelTokens::<T>::default(), |acc, x| acc.saturating_add(x));
trace!("Extending messages with token sum: {}", sum);
let new_token_count = self.context_tokens.checked_add(&sum).ok_or_else(|| {
LoomError::from(WeaveError::BadConfig(
"Number of tokens exceeds max tokens for model".to_string(),
))
})?;
// Update the token count and messages only if all checks pass
self.context_tokens = new_token_count;
for m in msgs {
self.context_messages.push(m);
}
Ok(())
}
}