1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
use crate::{IntoRequest, ToSchema};
use derive_builder::Builder;
use reqwest::{Client, RequestBuilder};
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, Serialize, Builder)]
pub struct ChatCompletionRequest {
/// A list of messages comprising the conversation so far.
#[builder(setter(into))]
messages: Vec<ChatCompletionMessage>,
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
#[builder(default)]
model: ChatCompleteModel,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
frequency_penalty: Option<f32>,
// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
// #[builder(default, setter(strip_option))]
// #[serde(skip_serializing_if = "Option::is_none")]
// logit_bias: Option<f32>,
/// The maximum number of tokens to generate in the chat completion.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
max_tokens: Option<usize>,
/// How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
n: Option<usize>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
presence_penalty: Option<f32>,
/// An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is valid JSON.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
response_format: Option<ChatResponseFormatObject>,
/// This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result. Determinism is not guaranteed, and you should refer to the system_fingerprint response parameter to monitor changes in the backend.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
seed: Option<usize>,
/// Up to 4 sequences where the API will stop generating further tokens.
// TODO: make this as an enum
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
stop: Option<String>,
/// If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
stream: Option<bool>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or top_p but not both.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
top_p: Option<f32>,
/// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of functions the model may generate JSON inputs for.
#[builder(default, setter(into))]
#[serde(skip_serializing_if = "Vec::is_empty")]
tools: Vec<Tool>,
/// Controls which (if any) function is called by the model. none means the model will not call a function and instead generates a message. auto means the model can pick between generating a message or calling a function. Specifying a particular function via {"type: "function", "function": {"name": "my_function"}} forces the model to call that function. none is the default when no functions are present. auto is the default if functions are present.
#[builder(default, setter(strip_option))]
#[serde(skip_serializing_if = "Option::is_none")]
tool_choice: Option<ToolChoice>,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
#[builder(default, setter(strip_option, into))]
#[serde(skip_serializing_if = "Option::is_none")]
user: Option<String>,
}
#[derive(Debug, Clone, Default, PartialEq, Eq, Serialize)]
#[serde(rename_all = "snake_case")]
pub enum ToolChoice {
#[default]
None,
Auto,
// TODO: we need something like this: #[serde(tag = "type", content = "function")]
Function {
name: String,
},
}
#[derive(Debug, Clone, Serialize)]
pub struct Tool {
/// The schema of the tool. Currently, only functions are supported.
r#type: ToolType,
/// The schema of the tool. Currently, only functions are supported.
function: FunctionInfo,
}
#[derive(Debug, Clone, Serialize)]
pub struct FunctionInfo {
/// A description of what the function does, used by the model to choose when and how to call the function.
description: String,
/// The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
name: String,
/// The parameters the functions accepts, described as a JSON Schema object.
parameters: serde_json::Value,
}
#[derive(Debug, Clone, Serialize)]
pub struct ChatResponseFormatObject {
r#type: ChatResponseFormat,
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Serialize)]
#[serde(rename_all = "snake_case")]
pub enum ChatResponseFormat {
Text,
#[default]
Json,
}
#[derive(Debug, Clone, Serialize)]
#[serde(rename_all = "snake_case", tag = "role")]
pub enum ChatCompletionMessage {
/// A message from a system.
System(SystemMessage),
/// A message from a human.
User(UserMessage),
/// A message from the assistant.
Assistant(AssistantMessage),
/// A message from a tool.
Tool(ToolMessage),
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Serialize, Deserialize)]
pub enum ChatCompleteModel {
#[default]
#[serde(rename = "gpt-3.5-turbo-1106")]
Gpt3Turbo,
#[serde(rename = "gpt-3.5-turbo-instruct")]
Gpt3TurboInstruct,
#[serde(rename = "gpt-4-1106-preview")]
Gpt4Turbo,
#[serde(rename = "gpt-4-1106-vision-preview")]
Gpt4TurboVision,
}
#[derive(Debug, Clone, Serialize)]
pub struct SystemMessage {
/// The contents of the system message.
content: String,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none")]
name: Option<String>,
}
#[derive(Debug, Clone, Serialize)]
pub struct UserMessage {
/// The contents of the user message.
content: String,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none")]
name: Option<String>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct AssistantMessage {
/// The contents of the system message.
#[serde(default)]
content: Option<String>,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none", default)]
name: Option<String>,
/// The tool calls generated by the model, such as function calls.
#[serde(skip_serializing_if = "Vec::is_empty", default)]
tool_calls: Vec<ToolCall>,
}
#[derive(Debug, Clone, Serialize)]
pub struct ToolMessage {
/// The contents of the tool message.
content: String,
/// Tool call that this message is responding to.
tool_call_id: String,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ToolCall {
/// The ID of the tool call.
id: String,
/// The type of the tool. Currently, only function is supported.
r#type: ToolType,
/// The function that the model called.
function: FunctionCall,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct FunctionCall {
/// The name of the function to call.
name: String,
/// The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
arguments: String,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum ToolType {
#[default]
Function,
}
#[derive(Debug, Clone, Deserialize)]
pub struct ChatCompletionResponse {
/// A unique identifier for the chat completion.
pub id: String,
/// A list of chat completion choices. Can be more than one if n is greater than 1.
pub choices: Vec<ChatCompletionChoice>,
/// The Unix timestamp (in seconds) of when the chat completion was created.
pub created: usize,
/// The model used for the chat completion.
pub model: ChatCompleteModel,
/// This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the seed request parameter to understand when backend changes have been made that might impact determinism.
pub system_fingerprint: String,
/// The object type, which is always chat.completion.
pub object: String,
/// Usage statistics for the completion request.
pub usage: ChatCompleteUsage,
}
#[derive(Debug, Clone, Deserialize)]
pub struct ChatCompletionChoice {
/// The reason the model stopped generating tokens. This will be stop if the model hit a natural stop point or a provided stop sequence, length if the maximum number of tokens specified in the request was reached, content_filter if content was omitted due to a flag from our content filters, tool_calls if the model called a tool, or function_call (deprecated) if the model called a function.
pub finish_reason: FinishReason,
/// The index of the choice in the list of choices.
pub index: usize,
/// A chat completion message generated by the model.
pub message: AssistantMessage,
}
#[derive(Debug, Clone, Deserialize)]
pub struct ChatCompleteUsage {
/// Number of tokens in the generated completion.
pub completion_tokens: usize,
/// Number of tokens in the prompt.
pub prompt_tokens: usize,
/// Total number of tokens used in the request (prompt + completion).
pub total_tokens: usize,
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum FinishReason {
#[default]
Stop,
Length,
ContentFilter,
ToolCalls,
}
impl IntoRequest for ChatCompletionRequest {
fn into_request(self, base_url: &str, client: Client) -> RequestBuilder {
let url = format!("{}/chat/completions", base_url);
client.post(url).json(&self)
}
}
impl ChatCompletionRequest {
pub fn new(messages: impl Into<Vec<ChatCompletionMessage>>) -> Self {
ChatCompletionRequestBuilder::default()
.messages(messages)
.build()
.unwrap()
}
pub fn new_with_tools(
messages: impl Into<Vec<ChatCompletionMessage>>,
tools: impl Into<Vec<Tool>>,
) -> Self {
ChatCompletionRequestBuilder::default()
.messages(messages)
.tools(tools)
.build()
.unwrap()
}
}
impl ChatCompletionMessage {
pub fn new_system(content: impl Into<String>, name: &str) -> ChatCompletionMessage {
ChatCompletionMessage::System(SystemMessage {
content: content.into(),
name: Self::get_name(name),
})
}
pub fn new_user(content: impl Into<String>, name: &str) -> ChatCompletionMessage {
ChatCompletionMessage::User(UserMessage {
content: content.into(),
name: Self::get_name(name),
})
}
fn get_name(name: &str) -> Option<String> {
if name.is_empty() {
None
} else {
Some(name.into())
}
}
}
impl Tool {
pub fn new_function<T: ToSchema>(
name: impl Into<String>,
description: impl Into<String>,
) -> Self {
let parameters = T::to_schema();
Self {
r#type: ToolType::Function,
function: FunctionInfo {
name: name.into(),
description: description.into(),
parameters,
},
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{ToSchema, SDK};
use anyhow::Result;
use schemars::JsonSchema;
#[allow(dead_code)]
#[derive(Debug, Clone, Deserialize, JsonSchema)]
struct GetWeatherArgs {
/// The city to get the weather for.
city: String,
/// the unit
unit: TemperatureUnit,
}
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Deserialize, JsonSchema)]
enum TemperatureUnit {
/// Celsius
#[default]
Celsius,
/// Fahrenheit
Fahrenheit,
}
#[derive(Debug, Clone)]
struct GetWeatherResponse {
temperature: f32,
unit: TemperatureUnit,
}
#[allow(dead_code)]
#[derive(Debug, Deserialize, JsonSchema)]
struct ExplainMoodArgs {
/// The mood to explain.
name: String,
}
fn get_weather_forecast(args: GetWeatherArgs) -> GetWeatherResponse {
match args.unit {
TemperatureUnit::Celsius => GetWeatherResponse {
temperature: 22.2,
unit: TemperatureUnit::Celsius,
},
TemperatureUnit::Fahrenheit => GetWeatherResponse {
temperature: 72.0,
unit: TemperatureUnit::Fahrenheit,
},
}
}
#[test]
#[ignore]
fn chat_completion_request_tool_choice_function_serialize_should_work() {
let req = ChatCompletionRequestBuilder::default()
.tool_choice(ToolChoice::Function {
name: "my_function".to_string(),
})
.messages(vec![])
.build()
.unwrap();
let json = serde_json::to_value(req).unwrap();
assert_eq!(
json,
serde_json::json!({
"tool_choice": {
"type": "function",
"function": {
"name": "my_function"
}
},
"messages": []
})
);
}
#[test]
fn chat_completion_request_serialize_should_work() {
let mut req = get_simple_completion_request();
req.tool_choice = Some(ToolChoice::Auto);
let json = serde_json::to_value(req).unwrap();
assert_eq!(
json,
serde_json::json!({
"tool_choice": "auto",
"model": "gpt-3.5-turbo-1106",
"messages": [{
"role": "system",
"content": "I can answer any question you ask me."
}, {
"role": "user",
"content": "What is human life expectancy in the world?",
"name": "user1"
}]
})
);
}
#[test]
fn chat_completion_request_with_tools_serialize_should_work() {
let req = get_tool_completion_request();
let json = serde_json::to_value(req).unwrap();
assert_eq!(
json,
serde_json::json!({
"model": "gpt-3.5-turbo-1106",
"messages": [{
"role": "system",
"content": "I can choose the right function for you."
}, {
"role": "user",
"content": "What is the weather like in Boston?",
"name": "user1"
}],
"tools": [
{
"type": "function",
"function": {
"description": "Get the weather forecast for a city.",
"name": "get_weather_forecast",
"parameters": GetWeatherArgs::to_schema()
}
},
{
"type": "function",
"function": {
"description": "Explain the meaning of the given mood.",
"name": "explain_mood",
"parameters": ExplainMoodArgs::to_schema()
}
}
]
})
);
}
#[tokio::test]
async fn simple_chat_completion_should_work() -> Result<()> {
let req = get_simple_completion_request();
let res = SDK.chat_completion(req).await?;
assert_eq!(res.model, ChatCompleteModel::Gpt3Turbo);
assert_eq!(res.object, "chat.completion");
assert_eq!(res.choices.len(), 1);
let choice = &res.choices[0];
assert_eq!(choice.finish_reason, FinishReason::Stop);
assert_eq!(choice.index, 0);
assert_eq!(choice.message.tool_calls.len(), 0);
Ok(())
}
#[tokio::test]
async fn chat_completion_with_tools_should_work() -> Result<()> {
let req = get_tool_completion_request();
let res = SDK.chat_completion(req).await?;
assert_eq!(res.model, ChatCompleteModel::Gpt3Turbo);
assert_eq!(res.object, "chat.completion");
assert_eq!(res.choices.len(), 1);
let choice = &res.choices[0];
assert_eq!(choice.finish_reason, FinishReason::ToolCalls);
assert_eq!(choice.index, 0);
assert_eq!(choice.message.content, None);
assert_eq!(choice.message.tool_calls.len(), 1);
let tool_call = &choice.message.tool_calls[0];
assert_eq!(tool_call.function.name, "get_weather_forecast");
let ret = get_weather_forecast(serde_json::from_str(&tool_call.function.arguments)?);
assert_eq!(ret.unit, TemperatureUnit::Celsius);
assert_eq!(ret.temperature, 22.2);
Ok(())
}
fn get_simple_completion_request() -> ChatCompletionRequest {
let messages = vec![
ChatCompletionMessage::new_system("I can answer any question you ask me.", ""),
ChatCompletionMessage::new_user("What is human life expectancy in the world?", "user1"),
];
ChatCompletionRequest::new(messages)
}
fn get_tool_completion_request() -> ChatCompletionRequest {
let messages = vec![
ChatCompletionMessage::new_system("I can choose the right function for you.", ""),
ChatCompletionMessage::new_user("What is the weather like in Boston?", "user1"),
];
let tools = vec![
Tool::new_function::<GetWeatherArgs>(
"get_weather_forecast",
"Get the weather forecast for a city.",
),
Tool::new_function::<ExplainMoodArgs>(
"explain_mood",
"Explain the meaning of the given mood.",
),
];
ChatCompletionRequest::new_with_tools(messages, tools)
}
}