1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
//! # Tokens Module
//!
//! This module provides utilities for managing tokens in Language Learning Models (LLMs),
//! primarily focusing on measuring the sizes of prompts. This is useful for ensuring that
//! prompts stay within the context window size supported by a given model.
use crate::step::Step;
use crate::{traits, Parameters, TextSplitter};
use thiserror::Error;
/// Custom error type for handling prompt token-related errors.
#[derive(Clone, Debug, Error)]
pub enum PromptTokensError {
/// Indicates that prompt tokens are not accessible for the given step.
#[error("The prompt tokens are not accessible for this type of step.")]
NotAvailable,
/// Indicates that the prompt tokens could not be computed.
#[error("The prompt tokens could not be computed.")]
UnableToCompute,
/// Indicates that the prompt tokens could not be computed because formatting the prompt failed.
#[error("Formatting prompt failed: {0}")]
PromptFormatFailed(#[from] crate::prompt::StringTemplateError),
#[error("Tokenizer error: {0}")]
TokenizerError(#[from] crate::tokens::TokenizerError),
}
/// An extension trait for the `Executor` trait that provides additional methods for working
/// with token counts.
pub trait ExecutorTokenCountExt<Output, Token: Clone, StepTokenizer>:
traits::Executor<Output = Output, Token = Token>
{
/// Splits a `Parameters` object into multiple smaller `Parameters` objects that fit within
/// the context window size supported by the given model.
///
/// # Arguments
/// * `step` - The step that will process the Parameters. Has impact on tokenizer & text splitter used
/// * `doc` - The parameter object to split into multiple, smaller, parameters
/// * `chunk_overlap` - The amount of tokens each split part should overlap with previous & next chunk
///
/// # Errors
///
/// Returns a `PromptTokensError` if there is an issue computing the tokens.
fn split_to_fit(
&self,
step: &Step<Self>,
doc: &Parameters,
chunk_overlap: Option<usize>,
) -> Result<Vec<Parameters>, PromptTokensError> {
let splitter = self
.get_text_splitter(step.options())
.map_err(|_e| PromptTokensError::UnableToCompute)?;
let text = doc.get_text().ok_or(PromptTokensError::UnableToCompute)?;
let max_tokens = self
.max_tokens_allowed(step.options())
.try_into()
.map_err(|_| PromptTokensError::UnableToCompute)?;
let chunk_overlap = chunk_overlap.unwrap_or(0);
let split_params = splitter
.split_text(text, max_tokens, chunk_overlap)
.map_err(|_e| PromptTokensError::UnableToCompute)?
.into_iter()
.map(Parameters::new_with_text)
.collect();
Ok(split_params)
}
}
/// Struct representing token count information, including the maximum tokens allowed and the
/// total number of tokens used.
pub struct TokenCount {
/// The maximum number of tokens allowed.
max_tokens: i32,
/// The total number of tokens used.
tokens_used: i32,
}
impl TokenCount {
/// Creates a new `TokenCount` instance with the given maximum tokens and tokens used.
///
/// # Arguments
///
/// * `max_tokens` - The maximum number of tokens allowed.
/// * `tokens_used` - The total number of tokens used.
pub fn new(max_tokens: i32, tokens_used: i32) -> Self {
Self {
max_tokens,
tokens_used,
}
}
/// Returns the number of tokens that could be added to the context window.
pub fn tokens_remaining(&self) -> i32 {
self.max_tokens - self.tokens_used
}
/// Returns true if there is still room in the context window.
pub fn has_tokens_remaining(&self) -> bool {
self.has_room_for(1)
}
/// Returns true if there is room for the given number of tokens.
///
/// # Arguments
///
/// * `tokens` - The number of tokens to check if there is room for.
///
/// # Examples
///
/// ```
/// use llm_chain::tokens::TokenCount;
/// let token_count = TokenCount::new(100, 50);
/// assert!(token_count.has_room_for(49));
/// ```
pub fn has_room_for(&self, tokens: i32) -> bool {
self.tokens_remaining() >= tokens
}
}
/// An extension trait for the `Executor` trait that provides additional methods for working with tokens
impl<E, O, T, N> ExecutorTokenCountExt<O, T, N> for E
where
E: traits::Executor<Output = O, Token = T>,
T: Clone,
{
}
#[derive(Error, Debug, Clone)]
pub enum TokenizerError {
#[error("Error tokenizing input text")]
TokenizationError,
#[error("Error stringifying tokens to text")]
ToStringError,
#[error("Error creating tokenizer")]
TokenizerCreationError,
}
pub trait Tokenizer<TokenType: Clone> {
/// Tokenizes a string.
///
/// # Parameters
///
/// * `doc`: The string to tokenize.
///
/// # Returns
///
/// A `Result` containing a vector of tokens, or an error if there was a problem.
fn tokenize_str(&self, doc: &str) -> Result<Vec<TokenType>, TokenizerError>;
/// Converts a vector of tokens into a string.
///
/// # Parameters
///
/// * `tokens`: The slice of tokens to convert.
///
/// # Returns
///
/// A `Result` containing a string, or an error if there was a problem.
fn to_string(&self, tokens: Vec<TokenType>) -> Result<String, TokenizerError>;
}