1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
use std::fmt::Display;
use partial_sort::PartialSort;
use rand::{distributions::WeightedIndex, prelude::Distribution};
use thiserror::Error;
use crate::{
mulf, EvaluateOutputRequest, InferenceError, InferenceParameters, Model, TokenId,
TokenUtf8Buffer,
};
// The size of a scratch buffer used for inference. This is used for temporary
// storage of intermediate results during inference.
//
// The specific value was copied from `llama.cpp`.
const SCRATCH_SIZE: usize = 512 * 1024 * 1024;
/// An inference session represents the state of the text generation. This holds
/// the full context window, as long as several additional parameters used
/// during sampling.
///
/// # Safety
/// This implements `Send` as it can be sent to another thread. However, it does
/// not implement `Sync` - it *cannot* be used from multiple threads at the same time.
///
/// Consider spawning multiple inference sessions for the same model if you need
/// to use it from multiple threads.
pub struct InferenceSession {
// Must be kept alive for the model
pub(crate) _session_ctx: ggml::Context,
// Original size of the memory used to create this context.
pub(crate) memory_size: usize,
// Parameters for the session.
pub(crate) params: InferenceSessionParameters,
/// Memory K
#[doc(hidden)]
pub memory_k: ggml::Tensor,
/// Memory M
#[doc(hidden)]
pub memory_v: ggml::Tensor,
/// How many tokens have been fed into the model's working memory so far.
#[doc(hidden)]
pub n_past: usize,
/// How much memory is required per token for the temporary context used
/// during inference.
#[doc(hidden)]
pub mem_per_token: usize,
/// All tokens generated by this inference session
pub(crate) tokens: Vec<TokenId>,
/// The logits that were last predicted by the network. Zeroed out otherwise.
#[doc(hidden)]
pub last_logits: Vec<f32>,
/// Scratch buffers used during inference.
///
/// The number of scratch buffers was copied from `llama.cpp`.
/// There is no specific reason for this number, but one is insufficient.
#[doc(hidden)]
pub scratch: [ggml::Buffer; 2],
}
unsafe impl Send for InferenceSession {}
impl InferenceSession {
/// Feed a prompt to the model for this session.
pub fn feed_prompt<E: std::error::Error + 'static>(
&mut self,
model: &dyn Model,
params: &InferenceParameters,
prompt: &str,
output_request: &mut EvaluateOutputRequest,
mut callback: impl FnMut(&[u8]) -> Result<(), E>,
) -> Result<(), InferenceError> {
let beginning_of_sentence = self.n_past == 0;
let vocab = model.vocabulary();
let prompt_tokens: Vec<TokenId> = vocab
.tokenize(prompt, beginning_of_sentence)?
.iter()
.map(|(_, tok)| *tok)
.collect();
if self.n_past + prompt_tokens.len() >= model.n_context_tokens() {
return Err(InferenceError::ContextFull);
}
for batch in prompt_tokens.chunks(params.n_batch) {
model.evaluate(self, params, batch, output_request);
for &tk in batch {
let should_call_callback = Some(tk) != model.bot_token_id();
if should_call_callback {
// NOTE: No string ever tokenizes to the end of sentence. So we
// can just return the id here.
if let Err(e) = callback(vocab.token(tk as usize)) {
return Err(InferenceError::UserCallback(Box::new(e)));
}
}
// Update the tokens for this session
self.tokens.push(tk);
}
}
Ok(())
}
/// Infer the next token for this session.
pub fn infer_next_token<'v>(
&mut self,
model: &'v dyn Model,
params: &InferenceParameters,
output_request: &mut EvaluateOutputRequest,
rng: &mut impl rand::Rng,
) -> Result<&'v [u8], InferenceError> {
if self.n_past + 1 >= model.n_context_tokens() {
return Err(InferenceError::ContextFull);
}
// First, sample the next token, using the stored last_logits;
let next_token = self.sample_top_p_top_k(params, rng);
// Update the tokens for this session
self.tokens.push(next_token);
// Then, evaluate the network again to compute the new last_logits
model.evaluate(self, params, &[next_token], output_request);
// Return the next token
if next_token as TokenId == model.eot_token_id() {
Err(InferenceError::EndOfText)
} else {
Ok(model.vocabulary().token(next_token as usize))
}
}
/// Calls [Self::infer_with_params] with the [InferenceParameters] and
/// [InferenceWithPromptParameters] provided by the [Model]; refer to
/// [Self::infer_with_params] for more information.
pub fn infer<E: std::error::Error + 'static>(
&mut self,
model: &dyn Model,
prompt: &str,
output_request: &mut EvaluateOutputRequest,
rng: &mut impl rand::Rng,
callback: impl FnMut(&str) -> Result<(), E>,
) -> Result<InferenceStats, InferenceError> {
self.infer_with_params(
model,
&model.inference_params(),
&model.inference_prompt_params(),
prompt,
output_request,
rng,
callback,
)
}
/// Generate text by using the provided [Model] to evaluate the `prompt`.
/// The `callback` is called with each new token until an end-of-text (EOT)
/// token is encountered or the maximum number of tokens have been
/// generated (specified by [InferenceWithPromptParameters::maximum_token_count]).
/// The [EvaluateOutputRequest] is used to specify additional data to fetch from
/// the model.
#[allow(clippy::too_many_arguments)]
pub fn infer_with_params<E: std::error::Error + 'static>(
&mut self,
model: &dyn Model,
params: &InferenceParameters,
prompt_params: &InferenceWithPromptParameters,
prompt: &str,
output_request: &mut EvaluateOutputRequest,
rng: &mut impl rand::Rng,
mut callback: impl FnMut(&str) -> Result<(), E>,
) -> Result<InferenceStats, InferenceError> {
let maximum_token_count = prompt_params.maximum_token_count.unwrap_or(usize::MAX);
if prompt_params.play_back_previous_tokens {
// "Play back" the existing tokens, so that loading from an inference snapshot works
// as expected.
let mut token_utf8_buf = TokenUtf8Buffer::new();
for token_id in &self.tokens {
// Buffer the token until it's valid UTF-8, then call the callback.
if let Some(tokens) =
token_utf8_buf.push(model.vocabulary().token(*token_id as usize))
{
if let Err(e) = callback(&tokens) {
return Err(InferenceError::UserCallback(Box::new(e)));
}
}
}
}
let mut stats = InferenceStats::default();
let start_at = std::time::SystemTime::now();
// Feed the initial prompt through the transformer, to update its
// context window with new data.
self.feed_prompt(
model,
params,
prompt,
output_request,
TokenUtf8Buffer::adapt_callback(&mut callback),
)?;
stats.feed_prompt_duration = start_at.elapsed().unwrap();
stats.prompt_tokens = self.n_past;
// After the prompt is consumed, sample tokens by repeatedly calling
// `infer_next_token`. We generate tokens until the model returns an
// EndOfText token, or we run out of space in the context window,
// or we reach the specified limit.
let mut tokens_processed = 0;
let mut token_utf8_buf = TokenUtf8Buffer::new();
while tokens_processed < maximum_token_count {
let token = match self.infer_next_token(model, params, output_request, rng) {
Ok(token) => token,
Err(InferenceError::EndOfText) => break,
Err(e) => return Err(e),
};
// Buffer the token until it's valid UTF-8, then call the callback.
if let Some(tokens) = token_utf8_buf.push(token) {
if let Err(e) = callback(&tokens) {
return Err(InferenceError::UserCallback(Box::new(e)));
}
}
tokens_processed += 1;
}
stats.predict_duration = start_at.elapsed().unwrap();
stats.predict_tokens = self.n_past;
Ok(stats)
}
/// Sample a token using Top-P/Top-K sampling and the last logits from this session.
pub fn sample_top_p_top_k(
&self,
params: &InferenceParameters,
rng: &mut impl rand::Rng,
) -> TokenId {
let logits = &self.last_logits;
let n_logits = logits.len();
let mut logits_id = Vec::<(f32, TokenId)>::with_capacity(n_logits);
{
let scale = 1.0 / params.temperature;
for (i, &logit) in logits.iter().enumerate() {
let tid = i as TokenId;
let val = if let Some(logit_override) = params.bias_tokens.get(tid) {
logit_override
} else if self.repetition_penalty_tokens().contains(&(i as TokenId)) {
// repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if logits[i] < 0.0 {
logit * scale * params.repeat_penalty
} else {
logit * scale / params.repeat_penalty
}
} else {
logit * scale
};
logits_id.push((val, tid));
}
}
// find the top K tokens
{
logits_id.partial_sort(params.top_k, |a, b| {
// Sort descending
b.0.total_cmp(&a.0)
});
logits_id.truncate(params.top_k);
}
let maxl = logits_id
.iter()
.map(|x| x.0)
.max_by(f32::total_cmp)
.unwrap();
// compute probs for the top K tokens
let mut probs: Vec<f32> = logits_id
.iter()
.copied()
.map(|(k, _)| (k - maxl).exp())
.collect();
let sum: f32 = probs.iter().copied().sum();
// Normalize the probs
for p in probs.iter_mut() {
*p /= sum;
}
// Top p sampling
if params.top_p < 1.0 {
let mut cumsum = 0.0;
for i in 0..probs.len() {
cumsum += probs[i];
if cumsum >= params.top_p {
probs.truncate(i + 1);
logits_id.truncate(i + 1);
break;
}
}
cumsum = 1.0 / cumsum;
for p in probs.iter_mut() {
*p *= cumsum;
}
}
let dist = WeightedIndex::new(&probs).expect("WeightedIndex error");
let idx = dist.sample(rng);
logits_id[idx].1
}
/// Obtains a serializable snapshot of the current inference status. This
/// can be used to cache the state of the model and store them into a file.
///
/// # Safety
///
/// This function provides raw access to the underlying memory owned by the
/// ggml context. While the provided `InferenceSnapshotRef` object is alive,
/// no other methods for this model object should be called.
pub unsafe fn get_snapshot(&mut self) -> InferenceSnapshotRef<'_> {
let memory_k = unsafe {
std::slice::from_raw_parts(self.memory_k.data() as *mut u8, self.memory_k.nbytes())
};
let memory_v = unsafe {
std::slice::from_raw_parts(self.memory_v.data() as *mut u8, self.memory_v.nbytes())
};
InferenceSnapshotRef {
npast: self.n_past,
session_params: self.params,
tokens: self.tokens.clone(),
logits: self.last_logits.clone(),
memory_k,
memory_v,
}
}
/// Creates an [InferenceSession] from a snapshot.
pub fn from_snapshot(
snapshot: InferenceSnapshot,
model: &dyn Model,
) -> Result<Self, SnapshotError> {
let mut session = model.start_session(snapshot.session_params);
if session.memory_k.nbytes() != snapshot.memory_k.len()
|| session.memory_v.nbytes() != snapshot.memory_v.len()
{
return Err(SnapshotError::MemorySizeMismatch {
self_size: session.memory_k.nbytes() + session.memory_v.nbytes(),
input_size: snapshot.memory_k.len() + snapshot.memory_v.len(),
});
}
// SAFETY: We have exclusive access to Session, which means no one else
// should be touching the context's memory. We can write to it because
// we already checked the size.
unsafe {
session.memory_k.write_data(&snapshot.memory_k);
session.memory_v.write_data(&snapshot.memory_v);
}
session.n_past = snapshot.npast;
session.tokens = snapshot.tokens;
session.last_logits = snapshot.last_logits;
Ok(session)
}
}
impl InferenceSession {
/// Create a new InferenceSession
pub fn new(
params: InferenceSessionParameters,
n_ctx: usize,
n_layer: usize,
n_embd: usize,
n_vocab: usize,
) -> InferenceSession {
let ctx_size = {
let mut ctx_size = 0;
ctx_size += mulf!(
n_ctx,
n_layer,
n_embd,
ggml::type_sizef(params.memory_k_type.into())
); // memory_k
ctx_size += mulf!(
n_ctx,
n_layer,
n_embd,
ggml::type_sizef(params.memory_v_type.into())
); // memory_v
ctx_size += (5 + 10 * n_layer) * 256; // object overhead
ctx_size
};
let session_ctx = ggml::Context::init(ctx_size, true);
// Initialize key + value memory tensors
let n_mem = n_layer * n_ctx;
let n_elements = n_embd * n_mem;
let memory_k = session_ctx.new_tensor_1d(params.memory_k_type.into(), n_elements);
let memory_v = session_ctx.new_tensor_1d(params.memory_v_type.into(), n_elements);
InferenceSession {
_session_ctx: session_ctx,
memory_size: ctx_size,
params,
memory_k,
memory_v,
n_past: 0,
mem_per_token: 0,
tokens: vec![],
last_logits: vec![0.0; n_vocab],
scratch: scratch_buffers(),
}
}
}
impl InferenceSession {
fn repetition_penalty_tokens(&self) -> &[TokenId] {
&self.tokens[self
.tokens
.len()
.saturating_sub(self.params.repetition_penalty_last_n)..]
}
}
impl Clone for InferenceSession {
fn clone(&self) -> Self {
let context = ggml::Context::init(self.memory_size, true);
let memory_k = context.new_tensor_1d(self.memory_k.get_type(), self.memory_k.nelements());
let memory_v = context.new_tensor_1d(self.memory_v.get_type(), self.memory_v.nelements());
Self {
_session_ctx: context,
memory_size: self.memory_size,
params: self.params,
memory_k,
memory_v,
n_past: self.n_past,
mem_per_token: self.mem_per_token,
tokens: self.tokens.clone(),
last_logits: self.last_logits.clone(),
scratch: scratch_buffers(),
}
}
}
#[derive(Error, Debug)]
/// Errors encountered during the snapshot process.
pub enum SnapshotError {
/// Arbitrary I/O error.
#[error("I/O error while reading or writing snapshot")]
IO(#[from] std::io::Error),
/// Mismatch between the snapshotted memory and the in-memory memory.
#[error("could not read snapshot due to size mismatch (self={self_size}, input={input_size})")]
MemorySizeMismatch {
/// The size of the session memory in memory.
self_size: usize,
/// The size of the session memory in snapshot.
input_size: usize,
},
}
#[derive(serde::Serialize, Clone, PartialEq)]
/// A serializable snapshot of the inference process.
/// Can be created by calling [InferenceSession::get_snapshot].
///
/// If serializing, ensure that your serializer is binary-efficient.
/// This type contains a large array of bytes; traditional textual serializers
/// are likely to serialize this as an array of numbers at extreme cost.
// Keep in sync with [InferenceSession] and [InferenceSnapshot].
pub struct InferenceSnapshotRef<'a> {
/// How many tokens have been stored in the memory so far.
pub npast: usize,
/// Parameters associated with the saved inference session.
pub session_params: InferenceSessionParameters,
/// All tokens generated by this inference session.
pub tokens: Vec<TokenId>,
/// The vector of logits that was produced after the last inference.
pub logits: Vec<f32>,
/// The contents of the 'key' memory tensor.
#[serde(with = "serde_bytes")]
pub memory_k: &'a [u8],
/// The contents of the 'value' memory tensor.
#[serde(with = "serde_bytes")]
pub memory_v: &'a [u8],
}
impl InferenceSnapshotRef<'_> {
/// Creates an owned [InferenceSnapshot] from this [InferenceSnapshotRef].
///
/// The [ToOwned] trait is not used due to its blanket implementation for all [Clone] types.
pub fn to_owned(&self) -> InferenceSnapshot {
InferenceSnapshot {
npast: self.npast,
session_params: self.session_params,
tokens: self.tokens.clone(),
last_logits: self.logits.clone(),
memory_k: self.memory_k.to_vec(),
memory_v: self.memory_v.to_vec(),
}
}
}
/// A serializable snapshot of the inference process. Can be restored by calling
/// [InferenceSession::from_snapshot].
#[derive(serde::Deserialize, Clone, PartialEq)]
// Keep in sync with [InferenceSession] and [InferenceSnapshotRef].
pub struct InferenceSnapshot {
/// How many tokens have been stored in the memory so far.
pub npast: usize,
/// Parameters associated with the saved inference session.
pub session_params: InferenceSessionParameters,
/// All tokens generated by this inference session.
pub tokens: Vec<TokenId>,
/// The vector of logits that was produced after the last inference.
pub last_logits: Vec<f32>,
/// The contents of the 'key' memory tensor.
#[serde(with = "serde_bytes")]
pub memory_k: Vec<u8>,
/// The contents of the 'value' memory tensor.
#[serde(with = "serde_bytes")]
pub memory_v: Vec<u8>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
/// Parameters for an inference session.
pub struct InferenceSessionParameters {
/// The number of tokens to consider for the repetition penalty.
pub repetition_penalty_last_n: usize,
/// The type of the memory K tensor.
pub memory_k_type: ModelKVMemoryType,
/// The type of the memory V tensor.
pub memory_v_type: ModelKVMemoryType,
}
impl Default for InferenceSessionParameters {
fn default() -> Self {
Self {
repetition_penalty_last_n: 512,
memory_k_type: ModelKVMemoryType::Float32,
memory_v_type: ModelKVMemoryType::Float32,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Default, Eq, serde::Serialize, serde::Deserialize)]
/// Settings specific to [InferenceSession::infer] [InferenceSession::infer_with_params].
pub struct InferenceWithPromptParameters {
/// Whether or not to call the callback with the previous tokens
/// that were encountered in this session.
///
/// You likely want to turn this on if you're using a session
/// that has been rehydrated from a snapshot.
pub play_back_previous_tokens: bool,
/// The maximum number of tokens to generate.
pub maximum_token_count: Option<usize>,
}
/// Statistics about the inference process.
#[derive(Debug, Clone, Copy)]
pub struct InferenceStats {
/// How long it took to feed the prompt.
pub feed_prompt_duration: std::time::Duration,
/// How many tokens the prompt was.
pub prompt_tokens: usize,
/// How long it took to predict new tokens.
pub predict_duration: std::time::Duration,
/// The number of predicted tokens.
pub predict_tokens: usize,
}
impl Default for InferenceStats {
fn default() -> Self {
Self {
feed_prompt_duration: std::time::Duration::from_secs(0),
prompt_tokens: 0,
predict_duration: std::time::Duration::from_secs(0),
predict_tokens: 0,
}
}
}
impl Display for InferenceStats {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"feed_prompt_duration: {}ms\nprompt_tokens: {}\npredict_duration: {}ms\npredict_tokens: {}\nper_token_duration: {:.3}ms",
self.feed_prompt_duration.as_millis(),
self.prompt_tokens,
self.predict_duration.as_millis(),
self.predict_tokens,
(self.predict_duration.as_millis() as f64) / (self.predict_tokens as f64),
)
}
}
/// Allowed types for the model memory K/V tensors.
#[derive(Clone, Copy, Debug, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub enum ModelKVMemoryType {
/// 16-bit float.
Float16,
/// 32-bit float.
Float32,
}
impl From<ModelKVMemoryType> for ggml::Type {
fn from(value: ModelKVMemoryType) -> Self {
match value {
ModelKVMemoryType::Float16 => ggml::Type::F16,
ModelKVMemoryType::Float32 => ggml::Type::F32,
}
}
}
fn scratch_buffers() -> [ggml::Buffer; 2] {
[
ggml::Buffer::new(SCRATCH_SIZE),
ggml::Buffer::new(SCRATCH_SIZE),
]
}