1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
//! an rusty equivalent of `llama_token_data`.
use crate::context::LlamaContext;
use crate::token::data::LlamaTokenData;
use crate::token::LlamaToken;
use llama_cpp_sys_2::llama_token;
use std::cmp::min;
use std::ptr;

/// a safe wrapper around `llama_token_data_array`.
#[derive(Debug, Clone, PartialEq)]
#[allow(clippy::module_name_repetitions)]
pub struct LlamaTokenDataArray {
    /// the underlying data
    pub data: Vec<LlamaTokenData>,
    /// is the data sorted?
    pub sorted: bool,
}

impl LlamaTokenDataArray {
    /// Create a new `LlamaTokenDataArray` from a vector and weather or not the data is sorted.
    ///
    /// ```
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    /// let array = LlamaTokenDataArray::new(vec![
    ///         LlamaTokenData::new(LlamaToken(0), 0.0, 0.0),
    ///         LlamaTokenData::new(LlamaToken(1), 0.1, 0.1)
    ///    ], false);
    /// assert_eq!(array.data.len(), 2);
    /// assert_eq!(array.sorted, false);
    /// ```
    #[must_use]
    pub fn new(data: Vec<LlamaTokenData>, sorted: bool) -> Self {
        Self { data, sorted }
    }

    /// Create a new `LlamaTokenDataArray` from an iterator and weather or not the data is sorted.
    /// ```
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    /// let array = LlamaTokenDataArray::from_iter([
    ///     LlamaTokenData::new(LlamaToken(0), 0.0, 0.0),
    ///     LlamaTokenData::new(LlamaToken(1), 0.1, 0.1)
    /// ], false);
    /// assert_eq!(array.data.len(), 2);
    /// assert_eq!(array.sorted, false);
    pub fn from_iter<T>(data: T, sorted: bool) -> LlamaTokenDataArray
    where
        T: IntoIterator<Item = LlamaTokenData>,
    {
        Self::new(data.into_iter().collect(), sorted)
    }
}

impl LlamaTokenDataArray {
    /// Modify the underlying data as a `llama_token_data_array`. and reconstruct the `LlamaTokenDataArray`.
    ///
    /// # Panics
    ///
    /// Panics if some of the safety conditions are not met. (we cannot check all of them at runtime so breaking them is UB)
    ///
    /// SAFETY:
    /// [modify] cannot change the data pointer.
    /// if the data is not sorted, sorted must be false.
    /// the size of the data can only decrease (i.e you cannot add new elements).
    pub(crate) unsafe fn modify_as_c_llama_token_data_array<T>(
        &mut self,
        modify: impl FnOnce(&mut llama_cpp_sys_2::llama_token_data_array) -> T,
    ) -> T {
        let size = self.data.len();
        let data = self.data.as_mut_ptr().cast();
        let mut c_llama_token_data_array = llama_cpp_sys_2::llama_token_data_array {
            data,
            size,
            sorted: self.sorted,
        };
        let result = modify(&mut c_llama_token_data_array);
        assert!(
            ptr::eq(data, c_llama_token_data_array.data),
            "data pointer changed"
        );
        assert!(c_llama_token_data_array.size <= size, "size increased");
        self.data.set_len(c_llama_token_data_array.size);
        self.sorted = c_llama_token_data_array.sorted;
        result
    }

    /// Repetition penalty described in [CTRL academic paper](https://arxiv.org/abs/1909.05858), with negative logit fix.
    /// Frequency and presence penalties described in [OpenAI API](https://platform.openai.com/docs/api-reference/parameter-details).
    ///
    /// # Parameters
    ///
    /// * `ctx` - the context to use. May be `None` if you do not care to record the sample timings.
    /// * `last_tokens` - the last tokens in the context.
    ///
    /// * `penalty_last_n` - the number of tokens back to consider for the repetition penalty. (0 for no penalty)
    /// * `penalty_repeat` - the repetition penalty. (1.0 for no penalty)
    /// * `penalty_freq` - the frequency penalty. (0.0 for no penalty)
    /// * `penalty_present` - the presence penalty. (0.0 for no penalty)
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::collections::BTreeMap;
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    /// let history = vec![
    ///   LlamaToken::new(2),
    ///   LlamaToken::new(1),
    ///   LlamaToken::new(0),
    /// ];
    ///
    /// let candidates = vec![
    ///    LlamaToken::new(0),
    ///    LlamaToken::new(1),
    ///    LlamaToken::new(2),
    ///    LlamaToken::new(3),
    /// ];
    ///
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates.iter().map(|&token| LlamaTokenData::new(token, 0.0, 0.0)), false);
    ///
    /// candidates.sample_repetition_penalty(None, &history, 2, 1.1, 0.1, 0.1);
    ///
    /// let token_logits = candidates.data.into_iter().map(|token_data| (token_data.id(), token_data.logit())).collect::<BTreeMap<_, _>>();
    /// assert_eq!(token_logits[&LlamaToken(0)], 0.0, "expected no penalty as it is out of `penalty_last_n`");
    /// assert!(token_logits[&LlamaToken(1)] < 0.0, "expected penalty as it is in `penalty_last_n`");
    /// assert!(token_logits[&LlamaToken(2)] < 0.0, "expected penalty as it is in `penalty_last_n`");
    /// assert_eq!(token_logits[&LlamaToken(3)], 0.0, "expected no penalty as it is not in `history`");
    /// ```
    pub fn sample_repetition_penalty(
        &mut self,
        ctx: Option<&mut LlamaContext>,
        last_tokens: &[LlamaToken],
        penalty_last_n: usize,
        penalty_repeat: f32,
        penalty_freq: f32,
        penalty_present: f32,
    ) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        let penalty_last_n = min(penalty_last_n, last_tokens.len().saturating_sub(1));
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_repetition_penalties(
                    ctx,
                    c_llama_token_data_array,
                    // safe cast as LlamaToken is repr(transparent)
                    last_tokens.as_ptr().cast::<llama_token>(),
                    penalty_last_n,
                    penalty_repeat,
                    penalty_freq,
                    penalty_present,
                );
            });
        }
    }

    /// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let lowest = LlamaTokenData::new(LlamaToken::new(0), 0.1, 0.0);
    /// let middle = LlamaTokenData::new(LlamaToken::new(1), 0.2, 0.0);
    /// let highest = LlamaTokenData::new(LlamaToken::new(2), 0.7, 0.0);
    ///
    /// let candidates = vec![lowest, middle, highest];
    ///
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates, false);
    /// candidates.sample_softmax(None);
    ///
    /// assert!(candidates.sorted);
    /// assert_eq!(candidates.data[0].id(), highest.id());
    /// assert_eq!(candidates.data[0].logit(), highest.logit());
    /// assert!(candidates.data[0].p() > candidates.data[1].p());
    /// assert_eq!(candidates.data[1].id(), middle.id());
    /// assert_eq!(candidates.data[1].logit(), middle.logit());
    /// assert!(candidates.data[1].p() > candidates.data[2].p());
    /// assert_eq!(candidates.data[2].id(), lowest.id());
    /// assert_eq!(candidates.data[2].logit(), lowest.logit());
    /// ```
    pub fn sample_softmax(&mut self, ctx: Option<&mut LlamaContext>) {
        unsafe {
            let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_softmax(ctx, c_llama_token_data_array);
            });
        }
    }

    /// Modify the logits of [`Self`] in place using temperature sampling.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let candidates = vec![
    ///     LlamaTokenData::new(LlamaToken::new(0), 0.1, 0.0),
    ///     LlamaTokenData::new(LlamaToken::new(1), 0.2, 0.0),
    ///     LlamaTokenData::new(LlamaToken::new(2), 0.7, 0.0)
    /// ];
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates, false);
    ///
    /// candidates.sample_temp(None, 0.5);
    ///
    /// assert_ne!(candidates.data[0].logit(), 0.1);
    /// assert_ne!(candidates.data[1].logit(), 0.2);
    /// assert_ne!(candidates.data[2].logit(), 0.7);
    /// ```
    pub fn sample_temp(&mut self, ctx: Option<&mut LlamaContext>, temperature: f32) {
        if temperature == 0.0 {
            return;
        }
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_temp(ctx, c_llama_token_data_array, temperature);
            });
        }
    }

    /// Randomly selects a token from the candidates based on their probabilities.
    pub fn sample_token(&mut self, ctx: &mut LlamaContext) -> LlamaToken {
        let llama_token = unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_token(ctx.context.as_ptr(), c_llama_token_data_array)
            })
        };
        LlamaToken(llama_token)
    }

    /// Top-K sampling described in academic paper [The Curious Case of Neural Text Degeneration](https://arxiv.org/abs/1904.09751)
    pub fn sample_top_k(&mut self, ctx: Option<&mut LlamaContext>, k: i32, min_keep: usize) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_top_k(ctx, c_llama_token_data_array, k, min_keep);
            });
        }
    }

    /// Tail Free Sampling described in [Tail-Free-Sampling](https://www.trentonbricken.com/Tail-Free-Sampling/).
    pub fn sample_tail_free(&mut self, ctx: Option<&mut LlamaContext>, z: f32, min_keep: usize) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_tail_free(ctx, c_llama_token_data_array, z, min_keep);
            });
        }
    }

    /// Locally Typical Sampling implementation described in the [paper](https://arxiv.org/abs/2202.00666).
    ///
    /// # Example
    ///
    /// ```rust
    ///
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let candidates = vec![
    ///    LlamaTokenData::new(LlamaToken::new(0), 0.1, 0.0),
    ///    LlamaTokenData::new(LlamaToken::new(1), 0.2, 0.0),
    ///    LlamaTokenData::new(LlamaToken::new(2), 0.7, 0.0),
    /// ];
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates, false);
    /// candidates.sample_typical(None, 0.5, 1);
    ///
    /// ```
    pub fn sample_typical(&mut self, ctx: Option<&mut LlamaContext>, p: f32, min_keep: usize) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_typical(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    /// Nucleus sampling described in academic paper [The Curious Case of Neural Text Degeneration](https://arxiv.org/abs/1904.09751)
    ///
    /// # Example
    ///
    /// ```rust
    ///
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let candidates = vec![
    ///   LlamaTokenData::new(LlamaToken::new(0), 0.1, 0.0),
    ///   LlamaTokenData::new(LlamaToken::new(1), 0.2, 0.0),
    ///   LlamaTokenData::new(LlamaToken::new(2), 0.7, 0.0),
    /// ];
    ///
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates, false);
    /// candidates.sample_top_p(None, 0.5, 1);
    ///
    /// assert_eq!(candidates.data.len(), 2);
    /// assert_eq!(candidates.data[0].id(), LlamaToken::new(2));
    /// assert_eq!(candidates.data[1].id(), LlamaToken::new(1));
    /// ```
    pub fn sample_top_p(&mut self, ctx: Option<&mut LlamaContext>, p: f32, min_keep: usize) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_top_p(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    /// Minimum P sampling as described in [#3841](https://github.com/ggerganov/llama.cpp/pull/3841)
    ///
    /// # Example
    ///
    /// ```
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let candidates = vec![
    ///   LlamaTokenData::new(LlamaToken::new(4), 0.0001, 0.0),
    ///   LlamaTokenData::new(LlamaToken::new(0), 0.1, 0.0),
    ///   LlamaTokenData::new(LlamaToken::new(1), 0.2, 0.0),
    ///   LlamaTokenData::new(LlamaToken::new(2), 0.7, 0.0),
    /// ];
    /// let mut candidates = LlamaTokenDataArray::from_iter(candidates, false);
    /// candidates.sample_min_p(None, 0.05, 1);
    /// ```
    pub fn sample_min_p(&mut self, ctx: Option<&mut LlamaContext>, p: f32, min_keep: usize) {
        let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
        unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_min_p(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    ///  Mirostat 2.0 algorithm described in the [paper](https://arxiv.org/abs/2007.14966). Uses tokens instead of words.
    ///
    /// # Parameters
    ///
    /// * `tau`  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
    /// * `eta` The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
    /// * `mu` Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
    pub fn sample_token_mirostat_v2(
        &mut self,
        ctx: &mut LlamaContext,
        tau: f32,
        eta: f32,
        mu: &mut f32,
    ) -> LlamaToken {
        let mu_ptr = ptr::from_mut(mu);
        let token = unsafe {
            self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_token_mirostat_v2(
                    ctx.context.as_ptr(),
                    c_llama_token_data_array,
                    tau,
                    eta,
                    mu_ptr,
                )
            })
        };
        *mu = unsafe { *mu_ptr };
        LlamaToken(token)
    }
}