1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
//! an rusty equivalent of `llama_token_data`.
use crate::context::LlamaContext;
use crate::token::data::LlamaTokenData;
use crate::token::LlamaToken;
use llama_cpp_sys_2::llama_token;
use std::cmp::min;
use std::ptr;
/// a safe wrapper around `llama_token_data_array`.
#[derive(Debug, Clone, PartialEq)]
#[allow(clippy::module_name_repetitions)]
pub struct LlamaTokenDataArray {
/// the underlying data
pub data: Vec<LlamaTokenData>,
/// is the data sorted?
pub sorted: bool,
}
impl LlamaTokenDataArray {
/// Create a new `LlamaTokenDataArray` from a vector and weather or not the data is sorted.
///
/// ```
/// # use llama_cpp_2::token::data::LlamaTokenData;
/// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
/// # use llama_cpp_2::token::LlamaToken;
/// let array = LlamaTokenDataArray::new(vec![
/// LlamaTokenData::new(LlamaToken(0), 0.0, 0.0),
/// LlamaTokenData::new(LlamaToken(1), 0.1, 0.1)
/// ], false);
/// assert_eq!(array.data.len(), 2);
/// assert_eq!(array.sorted, false);
/// ```
#[must_use]
pub fn new(data: Vec<LlamaTokenData>, sorted: bool) -> Self {
Self { data, sorted }
}
/// Create a new `LlamaTokenDataArray` from an iterator and weather or not the data is sorted.
/// ```
/// # use llama_cpp_2::token::data::LlamaTokenData;
/// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
/// # use llama_cpp_2::token::LlamaToken;
/// let array = LlamaTokenDataArray::from_iter([
/// LlamaTokenData::new(LlamaToken(0), 0.0, 0.0),
/// LlamaTokenData::new(LlamaToken(1), 0.1, 0.1)
/// ], false);
/// assert_eq!(array.data.len(), 2);
/// assert_eq!(array.sorted, false);
pub fn from_iter<T>(data: T, sorted: bool) -> LlamaTokenDataArray
where
T: IntoIterator<Item = LlamaTokenData>,
{
Self::new(data.into_iter().collect(), sorted)
}
}
impl LlamaTokenDataArray {
/// Modify the underlying data as a `llama_token_data_array`. and reconstruct the `LlamaTokenDataArray`.
///
/// # Panics
///
/// Panics if some of the safety conditions are not met. (we cannot check all of them at runtime so breaking them is UB)
///
/// SAFETY:
/// [modify] cannot change the data pointer.
/// if the data is not sorted, sorted must be false.
/// the size of the data can only decrease (i.e you cannot add new elements).
pub(crate) unsafe fn modify_as_c_llama_token_data_array(
&mut self,
modify: impl FnOnce(&mut llama_cpp_sys_2::llama_token_data_array),
) {
let size = self.data.len();
let data = self.data.as_mut_ptr().cast();
let mut c_llama_token_data_array = llama_cpp_sys_2::llama_token_data_array {
data,
size,
sorted: self.sorted,
};
modify(&mut c_llama_token_data_array);
assert!(
ptr::eq(data, c_llama_token_data_array.data),
"data pointer changed"
);
assert!(c_llama_token_data_array.size <= size, "size increased");
self.data.set_len(c_llama_token_data_array.size);
self.sorted = c_llama_token_data_array.sorted;
}
/// Repetition penalty described in [CTRL academic paper](https://arxiv.org/abs/1909.05858), with negative logit fix.
/// Frequency and presence penalties described in [OpenAI API](https://platform.openai.com/docs/api-reference/parameter-details).
///
/// # Parameters
///
/// * `ctx` - the context to use. May be `None` if you do not care to record the sample timings.
/// * `last_tokens` - the last tokens in the context.
/// * `penalty_last_n` - the number of tokens to consider for the repetition penalty. (1.0 for no penalty)
/// * `penalty_repeat` - the repetition penalty. (0.0 for no penalty)
/// * `penalty_freq` - the frequency penalty. (0.0 for no penalty)
///
/// # Example
///
/// ```rust
/// # use std::collections::BTreeMap;
/// # use llama_cpp_2::token::data::LlamaTokenData;
/// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
/// # use llama_cpp_2::token::LlamaToken;
/// let history = vec![
/// LlamaToken::new(2),
/// LlamaToken::new(1),
/// LlamaToken::new(0),
/// ];
///
/// let candidates = vec![
/// LlamaToken::new(0),
/// LlamaToken::new(1),
/// LlamaToken::new(2),
/// LlamaToken::new(3),
/// ];
///
/// let mut candidates = LlamaTokenDataArray::from_iter(candidates.iter().map(|&token| LlamaTokenData::new(token, 0.0, 0.0)), false);
///
/// candidates.sample_repetition_penalty(None, &history, 2, 1.1, 0.1, 0.1);
///
/// let token_logits = candidates.data.into_iter().map(|token_data| (token_data.id(), token_data.logit())).collect::<BTreeMap<_, _>>();
/// assert_eq!(token_logits[&LlamaToken(0)], 0.0, "expected no penalty as it is out of `penalty_last_n`");
/// assert!(token_logits[&LlamaToken(1)] < 0.0, "expected penalty as it is in `penalty_last_n`");
/// assert!(token_logits[&LlamaToken(2)] < 0.0, "expected penalty as it is in `penalty_last_n`");
/// assert_eq!(token_logits[&LlamaToken(3)], 0.0, "expected no penalty as it is not in `history`");
/// ```
pub fn sample_repetition_penalty(
&mut self,
ctx: Option<&mut LlamaContext>,
last_tokens: &[LlamaToken],
penalty_last_n: usize,
penalty_repeat: f32,
penalty_freq: f32,
penalty_present: f32,
) {
let ctx = ctx.map_or(ptr::null_mut(), |ctx| ctx.context.as_ptr());
let penalty_last_n = min(penalty_last_n, last_tokens.len().saturating_sub(1));
unsafe {
self.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
llama_cpp_sys_2::llama_sample_repetition_penalties(
ctx,
c_llama_token_data_array,
// safe cast as LlamaToken is repr(transparent)
last_tokens.as_ptr().cast::<llama_token>(),
penalty_last_n,
penalty_repeat,
penalty_freq,
penalty_present,
);
});
}
}
}