1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Sampling functions for the context.

use crate::context::LlamaContext;
use crate::grammar::LlamaGrammar;
use crate::token::data_array::LlamaTokenDataArray;
use crate::token::LlamaToken;
use llama_cpp_sys_2::llama_context;

/// struct to hold params for sampling
#[derive(Debug)]
#[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
pub struct Sampler<'grammar> {
    token_data_array: LlamaTokenDataArray,
    grammar: Option<&'grammar mut LlamaGrammar>,
    temperature: Option<f32>,
}

impl<'grammar> Sampler<'grammar> {
    #[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
    fn sample(self, llama_context: &mut LlamaContext) -> LlamaToken {
        match self {
            Sampler {
                token_data_array,
                grammar: None,
                temperature: None,
            } => llama_context.sample_token_greedy(token_data_array),
            Sampler {
                mut token_data_array,
                grammar: Some(grammar),
                temperature: None,
            } => {
                llama_context.sample_grammar(&mut token_data_array, grammar);
                let token = llama_context.sample_token_greedy(token_data_array);
                llama_context.grammar_accept_token(grammar, token);
                token
            }
            Sampler {
                mut token_data_array,
                grammar: None,
                temperature: Some(temp),
            } => {
                llama_context.sample_temp(&mut token_data_array, temp);
                llama_context.sample_token_softmax(&mut token_data_array);
                token_data_array.data[0].id()
            }
            Sampler {
                mut token_data_array,
                grammar: Some(grammar),
                temperature: Some(temperature),
            } => {
                llama_context.sample_grammar(&mut token_data_array, grammar);
                llama_context.sample_temp(&mut token_data_array, temperature);
                llama_context.sample_token_softmax(&mut token_data_array);
                let token = llama_context.sample_token_greedy(token_data_array);
                llama_context.grammar_accept_token(grammar, token);
                token
            }
        }
    }

    /// Create a new sampler.
    #[must_use]
    #[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
    pub fn new(llama_token_data_array: LlamaTokenDataArray) -> Self {
        Self {
            token_data_array: llama_token_data_array,
            grammar: None,
            temperature: None,
        }
    }

    /// Set the grammar for sampling.
    #[must_use]
    #[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
    pub fn with_grammar(mut self, grammar: &'grammar mut LlamaGrammar) -> Self {
        self.grammar = Some(grammar);
        self
    }

    /// Set the temperature for sampling.
    ///
    /// ```
    /// # use llama_cpp_2::context::LlamaContext;
    /// # use llama_cpp_2::context::sample::Sampler;
    /// # use llama_cpp_2::grammar::LlamaGrammar;
    /// # use llama_cpp_2::token::data::LlamaTokenData;
    /// # use llama_cpp_2::token::data_array::LlamaTokenDataArray;
    /// # use llama_cpp_2::token::LlamaToken;
    ///
    /// let _sampler = Sampler::new(LlamaTokenDataArray::new(vec![LlamaTokenData::new(LlamaToken(0), 0.0, 0.0)], false))
    ///     .with_temperature(0.5);
    /// ```
    #[must_use]
    #[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
    pub fn with_temperature(mut self, temperature: f32) -> Self {
        if temperature == 0.0 {
            return self;
        }
        self.temperature = Some(temperature);
        self
    }
}

impl LlamaContext<'_> {
    /// Sample a token.
    ///
    /// # Panics
    ///
    /// - sampler contains no tokens
    #[deprecated(since = "0.1.32", note = "this does not scale well with many params and does not allow for changing of orders.")]
    pub fn sample(&mut self, sampler: Sampler) -> LlamaToken {
        sampler.sample(self)
    }

    /// Accept a token into the grammar.
    pub fn grammar_accept_token(&mut self, grammar: &mut LlamaGrammar, token: LlamaToken) {
        unsafe {
            llama_cpp_sys_2::llama_grammar_accept_token(
                self.context.as_ptr(),
                grammar.grammar.as_ptr(),
                token.0,
            );
        }
    }

    /// Perform grammar sampling.
    pub fn sample_grammar(
        &mut self,
        llama_token_data_array: &mut LlamaTokenDataArray,
        llama_grammar: &LlamaGrammar,
    ) {
        unsafe {
            llama_token_data_array.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_grammar(
                    self.context.as_ptr(),
                    c_llama_token_data_array,
                    llama_grammar.grammar.as_ptr(),
                );
            });
        }
    }

    /// Modify [`token_data`] in place using temperature sampling.
    ///
    /// # Panics
    ///
    /// - [`temperature`] is not between 0.0 and 1.0
    pub fn sample_temp(&self, token_data: &mut LlamaTokenDataArray, temperature: f32) {
        assert!(
            temperature >= 0.0,
            "temperature must be positive (was {temperature})"
        );
        assert!(
            temperature <= 1.0,
            "temperature must be less than or equal to 1.0 (was {temperature})"
        );
        if temperature == 0.0 {
            return;
        }
        let ctx: *mut llama_context = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_temp(ctx, c_llama_token_data_array, temperature);
            });
        }
    }

    /// Sample a token greedily.
    ///
    /// # Panics
    ///
    /// - [`token_data`] is empty
    #[must_use]
    pub fn sample_token_greedy(&self, mut token_data: LlamaTokenDataArray) -> LlamaToken {
        assert!(!token_data.data.is_empty(), "no tokens");
        let mut data_arr = llama_cpp_sys_2::llama_token_data_array {
            data: token_data
                .data
                .as_mut_ptr()
                .cast::<llama_cpp_sys_2::llama_token_data>(),
            size: token_data.data.len(),
            sorted: token_data.sorted,
        };
        let token = unsafe {
            llama_cpp_sys_2::llama_sample_token_greedy(
                self.context.as_ptr(),
                std::ptr::addr_of_mut!(data_arr),
            )
        };
        LlamaToken(token)
    }

    /// Tail Free Sampling described in [Tail-Free-Sampling](https://www.trentonbricken.com/Tail-Free-Sampling/).
    pub fn sample_tail_free(&self, token_data: &mut LlamaTokenDataArray, z: f32, min_keep: usize) {
        let ctx = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_tail_free(ctx, c_llama_token_data_array, z, min_keep);
            });
        }
    }

    /// Locally Typical Sampling implementation described in the [paper](https://arxiv.org/abs/2202.00666).
    pub fn sample_typical(&self, token_data: &mut LlamaTokenDataArray, p: f32, min_keep: usize) {
        let ctx = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_typical(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    /// Nucleus sampling described in academic paper [The Curious Case of Neural Text Degeneration](https://arxiv.org/abs/1904.09751)"
    pub fn sample_top_p(&self, token_data: &mut LlamaTokenDataArray, p: f32, min_keep: usize) {
        let ctx = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_top_p(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    /// Minimum P sampling as described in [#3841](https://github.com/ggerganov/llama.cpp/pull/3841)
    pub fn sample_min_p(
        &self,
        llama_token_data: &mut LlamaTokenDataArray,
        p: f32,
        min_keep: usize,
    ) {
        let ctx = self.context.as_ptr();
        unsafe {
            llama_token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_min_p(ctx, c_llama_token_data_array, p, min_keep);
            });
        }
    }

    /// Top-K sampling described in academic paper [The Curious Case of Neural Text Degeneration](https://arxiv.org/abs/1904.09751)
    pub fn sample_top_k(&self, token_data: &mut LlamaTokenDataArray, k: i32, min_keep: usize) {
        let ctx = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_top_k(ctx, c_llama_token_data_array, k, min_keep);
            });
        }
    }

    /// Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
    pub fn sample_token_softmax(&self, token_data: &mut LlamaTokenDataArray) {
        let ctx = self.context.as_ptr();
        unsafe {
            token_data.modify_as_c_llama_token_data_array(|c_llama_token_data_array| {
                llama_cpp_sys_2::llama_sample_softmax(ctx, c_llama_token_data_array);
            });
        }
    }
}