1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
use std::collections::VecDeque;
use crate::{
ast::*,
common::*,
errors::InvalidCheckFileError,
pattern::matcher::{MatchAll, MatchAny, SimpleMatcher},
rules::*,
};
/// A tree of patterns to match on the same region of input.
///
/// Once all patterns are matched, the matches are checked
/// to ensure that they appear in the correct order.
#[derive(Debug)]
pub enum CheckTree<'a> {
/// The leaf node of this tree is a set of patterns to match as a group
Leaf(CheckGroup<'a>),
/// A two-way branch of the tree, rooted at a CHECK-NOT directive
Both {
/// Non-leaf nodes of the tree are rooted at a CHECK-NOT directive
root: MatchAny<'a>,
/// The patterns which must match before `root`
left: Box<CheckTree<'a>>,
/// The patterns which must match after `root`
right: Box<CheckTree<'a>>,
},
/// A single-branch node, rooted at a CHECK-NOT directive
Left {
/// Non-leaf nodes of the tree are rooted at a CHECK-NOT directive
root: MatchAny<'a>,
/// The patterns which must match before `root`
left: Box<CheckTree<'a>>,
},
/// A single-branch node, rooted at a CHECK-NOT directive
Right {
/// Non-leaf nodes of the tree are rooted at a CHECK-NOT directive
root: MatchAny<'a>,
/// The patterns which must match after `root`
right: Box<CheckTree<'a>>,
},
}
impl<'a> CheckTree<'a> {
pub fn leftmost(&self) -> Either<&CheckGroup<'a>, &MatchAny<'a>> {
match self {
Self::Leaf(ref group) => Left(group),
Self::Both { ref left, .. } | Self::Left { ref left, .. } => left.leftmost(),
Self::Right { ref root, .. } => Right(root),
}
}
pub fn rightmost(&self) -> Either<&CheckGroup<'a>, &MatchAny<'a>> {
match self {
Self::Leaf(ref group) => Left(group),
Self::Both { ref right, .. } | Self::Right { ref right, .. } => right.rightmost(),
Self::Left { ref root, .. } => Right(root),
}
}
}
#[derive(Debug)]
pub enum CheckGroup<'a> {
/// This group type occurs when there are no patterns
/// except for a CHECK-NOT in a logical group. This is
/// a special case, but is preferable to representing
/// this using [CheckTree]
Never(MatchAny<'a>),
/// A group of rules that can be matched in any order,
/// but must not overlap each other, and must not extend
/// past any matches in subsequent groups. This latter
/// property is verified lazily, after the true bounds
/// of the group are known.
Unordered(Box<CheckDag<'a>>),
/// This is a special group type, used to anchor the search for
/// a CHECK-DAG rule to a following CHECK. This is purely used to
/// improve the accuracy of diagnostics related to match errors
/// involving this specific rule transition.
Bounded {
/// The CHECK-DAG rule to match
left: Box<CheckDag<'a>>,
/// The CHECK group to set the end of the searchable
/// region for the CHECK-DAG rule
right: Box<CheckGroup<'a>>,
},
/// A group of rules that must be matched consecutively,
/// and must not overlap.
Ordered(Vec<Box<dyn DynRule + 'a>>),
/// An implicit group formed by a rule that is repeated N times
Repeated {
rule: Box<dyn DynRule + 'a>,
count: usize,
},
/// A tree of patterns to match depth-first
///
/// This group type occurs in the presence of CHECK-NOT directives
Tree(Box<CheckTree<'a>>),
}
impl<'a> CheckGroup<'a> {
pub fn first_pattern_span(&self) -> SourceSpan {
match self {
Self::Never(match_any) => match_any.first_pattern_span(),
Self::Unordered(check_dag) => check_dag.first_pattern_span(),
Self::Bounded { left, .. } => left.first_pattern_span(),
Self::Ordered(rules) => rules
.iter()
.map(|rule| rule.span())
.min_by_key(|span| span.start())
.unwrap(),
Self::Repeated { rule, .. } => rule.span(),
Self::Tree(tree) => match tree.leftmost() {
Left(group) => group.first_pattern_span(),
Right(match_any) => match_any.first_pattern_span(),
},
}
}
pub fn span(&self) -> SourceSpan {
match self {
Self::Never(match_any) => match_any.span(),
Self::Unordered(check_dag) => check_dag.span(),
Self::Bounded { left, right } => {
let start = left.span().start();
let end = right.span().end();
SourceSpan::from(start..end)
}
Self::Ordered(rules) => {
let start = rules[0].span().start();
let end = rules.last().unwrap().span().end();
SourceSpan::from(start..end)
}
Self::Repeated { rule, .. } => rule.span(),
Self::Tree(ref tree) => {
let leftmost_start = match tree.leftmost() {
Left(left) => left.span().start(),
Right(left) => left.span().start(),
};
let rightmost_end = match tree.rightmost() {
Left(right) => right.span().end(),
Right(right) => right.span().end(),
};
SourceSpan::from(leftmost_start..rightmost_end)
}
}
}
}
#[derive(Debug)]
pub enum CheckSection<'a> {
/// Rules contained between two CHECK-LABEL directives, or between a CHECK-LABEL
/// directive and the end of the input, whichever comes first.
///
/// The bounds of a block are known before evaluating the rules it contains,
/// so all searches in a block are automatically bounded to that block.
Block {
/// The input span which defines the bounds for searches in the block
label: SimpleMatcher<'a>,
body: Vec<CheckGroup<'a>>,
},
/// Rules which are part of a single logical group
///
/// Groups are formed in one of the following ways:
///
/// * Rules following a CHECK or CHECK-COUNT directive belong
/// to the same logical group, until a CHECK-NOT, CHECK-DAG,
/// or the next CHECK/CHECK-COUNT/CHECK-LABEL
///
/// * A set of CHECK-NOT rules is its own special type of group,
/// see the Exclude* variants for details.
///
/// * A set of CHECK-DAG rules is its own special type of group,
/// see the Unordered* variants for details.
Group { body: CheckGroup<'a> },
}
#[derive(Default, Debug)]
pub struct CheckProgram<'a> {
pub sections: Vec<CheckSection<'a>>,
}
impl<'a> CheckProgram<'a> {
pub fn compile(
check_file: CheckFile<'a>,
config: &Config,
interner: &mut StringInterner,
) -> DiagResult<Self> {
let lines = check_file.into_lines();
if lines.is_empty() {
return Err(Report::from(InvalidCheckFileError::Empty));
}
let mut program = Self::default();
program.compile_lines(lines, config, interner)?;
Ok(program)
}
/// Preprocess lines into blocks/groups
fn compile_lines(
&mut self,
lines: Vec<CheckLine<'a>>,
config: &Config,
interner: &mut StringInterner,
) -> DiagResult<()> {
// Divide up input lines into blocks
let mut iter = lines.into_iter().peekable();
let mut label = None;
let mut block = vec![];
let mut blocks: VecDeque<(Option<CheckLine<'a>>, Vec<CheckLine<'a>>)> = VecDeque::default();
while let Some(next) = iter.peek() {
match next.kind() {
Check::Label => {
if !block.is_empty() {
blocks.push_back((label.take(), core::mem::take(&mut block)));
}
label = iter.next();
while let Some(next) = iter.peek() {
match next.kind() {
Check::Label => {
break;
}
_ => {
block.push(iter.next().unwrap());
}
}
}
}
Check::Empty | Check::Same | Check::Next if block.is_empty() && label.is_none() => {
return Err(Report::from(InvalidCheckFileError::InvalidFirstCheck {
kind: Check::Empty,
line: next.span(),
}));
}
Check::Plain
| Check::Count(_)
| Check::Next
| Check::Same
| Check::Not
| Check::Dag
| Check::Empty => {
block.push(iter.next().unwrap());
}
_ => unreachable!(),
}
}
if !block.is_empty() {
blocks.push_back((label.take(), block));
}
self.compile_blocks(&mut blocks, config, interner)
}
/// Categorize and process blocks
fn compile_blocks(
&mut self,
blocks: &mut VecDeque<(Option<CheckLine<'a>>, Vec<CheckLine<'a>>)>,
config: &Config,
interner: &mut StringInterner,
) -> DiagResult<()> {
let mut groups = vec![];
let mut pending_tree = None;
while let Some((maybe_label, body)) = blocks.pop_front() {
let mut body = VecDeque::from(body);
while let Some(line) = body.pop_front() {
match line.kind() {
Check::Not => {
assert!(pending_tree.is_none());
let mut nots = vec![line];
while let Some(next) = body.pop_front() {
if matches!(next.kind(), Check::Not) {
nots.push(next);
} else {
body.push_front(next);
break;
}
}
let matcher = MatchAny::from(MatchAll::compile(nots, config, interner)?);
if body.is_empty() {
match groups.pop() {
Some(CheckGroup::Tree(left)) => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Left {
root: matcher,
left,
})))
}
Some(left @ CheckGroup::Unordered(_)) => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Left {
root: matcher,
left: Box::new(CheckTree::Leaf(left)),
})))
}
Some(group) => {
groups.push(group);
groups.push(CheckGroup::Never(matcher));
}
None => groups.push(CheckGroup::Never(matcher)),
}
} else {
match groups.pop() {
Some(CheckGroup::Tree(left)) => {
pending_tree = Some((Some(left), matcher));
}
Some(left @ CheckGroup::Unordered(_)) => {
let left = Box::new(CheckTree::Leaf(left));
pending_tree = Some((Some(left), matcher));
}
Some(group) => {
groups.push(group);
pending_tree = Some((None, matcher));
}
None => {
pending_tree = Some((None, matcher));
}
}
}
}
Check::Dag => {
let mut dags = vec![line];
while let Some(next) = body.pop_front() {
if matches!(next.kind(), Check::Dag) {
dags.push(next);
} else {
body.push_front(next);
break;
}
}
let check_dag =
Box::new(CheckDag::new(MatchAll::compile(dags, config, interner)?));
let group = if matches!(
body.front().map(|line| line.kind()),
Some(Check::Plain | Check::Count(_))
) {
let line = body.pop_front().unwrap();
let bounding_group = match line.kind() {
Check::Plain => CheckGroup::Ordered(vec![self.compile_rule(
line.ty,
line.pattern,
config,
interner,
)?]),
Check::Count(count) => CheckGroup::Repeated {
rule: self.compile_rule(
line.ty,
line.pattern,
config,
interner,
)?,
count,
},
_ => unsafe { std::hint::unreachable_unchecked() },
};
CheckGroup::Bounded {
left: check_dag,
right: Box::new(bounding_group),
}
} else {
CheckGroup::Unordered(check_dag)
};
if let Some((maybe_left, root)) = pending_tree.take() {
match maybe_left {
Some(left) => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Both {
root,
left,
right: Box::new(CheckTree::Leaf(group)),
})));
}
None => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Right {
root,
right: Box::new(CheckTree::Leaf(group)),
})));
}
}
} else {
groups.push(group);
}
}
Check::Count(count) => {
let group = CheckGroup::Repeated {
rule: self.compile_rule(line.ty, line.pattern, config, interner)?,
count,
};
if let Some((maybe_left, root)) = pending_tree.take() {
match maybe_left {
Some(left) => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Both {
root,
left,
right: Box::new(CheckTree::Leaf(group)),
})));
}
None => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Right {
root,
right: Box::new(CheckTree::Leaf(group)),
})));
}
}
} else {
groups.push(group);
}
}
_ => {
body.push_front(line);
let mut rules: Vec<Box<dyn DynRule + 'a>> = vec![];
while let Some(next) = body.pop_front() {
match next.kind() {
Check::Not | Check::Dag | Check::Count(_) => {
body.push_front(next);
break;
}
Check::Empty => {
rules.push(Box::new(CheckEmpty::new(next.span())));
}
_ => {
rules.push(self.compile_rule(
next.ty,
next.pattern,
config,
interner,
)?);
}
}
}
let group = CheckGroup::Ordered(rules);
if let Some((maybe_left, root)) = pending_tree.take() {
match maybe_left {
Some(left) => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Both {
root,
left,
right: Box::new(CheckTree::Leaf(group)),
})));
}
None => {
groups.push(CheckGroup::Tree(Box::new(CheckTree::Right {
root,
right: Box::new(CheckTree::Leaf(group)),
})));
}
}
} else {
groups.push(group);
}
}
}
}
assert!(pending_tree.is_none());
if let Some(label) = maybe_label {
let label = Pattern::compile_static(label.span, label.pattern, config, interner)?;
self.sections.push(CheckSection::Block {
label,
body: core::mem::take(&mut groups),
});
} else {
for body in core::mem::take(&mut groups).into_iter() {
self.sections.push(CheckSection::Group { body });
}
}
}
Ok(())
}
fn compile_rule(
&mut self,
ty: CheckType,
pattern: CheckPattern<'a>,
config: &Config,
interner: &mut StringInterner,
) -> DiagResult<Box<dyn DynRule + 'a>> {
let pattern = if ty.is_literal_match() {
Pattern::compile_literal(pattern, config)?
} else {
Pattern::compile(pattern, config, interner)?
};
match ty.kind {
Check::Plain | Check::Count(_) => {
Ok(Box::new(CheckPlain::new(pattern.into_matcher_mut())))
}
Check::Same => Ok(Box::new(CheckSame::new(pattern.into_matcher_mut()))),
Check::Next => Ok(Box::new(CheckNext::new(pattern.into_matcher_mut()))),
kind => unreachable!("we should never be compiling a rule for {kind} here"),
}
}
}