1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
use std::{
borrow::Cow,
path::{Path, PathBuf},
};
use either::Either::{self, Left, Right};
/// Represents an entry in a [PathPrefixTree]
pub struct Entry<'a, V> {
pub path: PathBuf,
pub data: &'a V,
}
impl<'a, V> Entry<'a, V> {
#[inline(always)]
pub fn into_path(self) -> PathBuf {
self.path
}
#[inline(always)]
pub fn into_value(self) -> &'a V {
self.data
}
}
impl<'a, V> AsRef<Path> for Entry<'a, V> {
#[inline(always)]
fn as_ref(&self) -> &Path {
self.path.as_path()
}
}
impl<'a, V> AsRef<V> for Entry<'a, V> {
#[inline(always)]
fn as_ref(&self) -> &V {
self.data
}
}
#[derive(Debug, thiserror::Error)]
pub enum TryInsertError {
#[error("unable to insert path due to existing entry with conflicting file type")]
PathTypeConflict,
#[error("the path '{}' is unreachable: an ancestor of this path is a file", .0.display())]
Unreachable(PathBuf),
}
/// A [PathPrefixTree] is a tree data structure optimized for indexing/searching
/// a directory hierarchy in various ways. In particular, it is efficient to ask:
///
/// * If a path is contained in the tree
/// * The nearest ancestor contained in the tree for a given path
///
/// Furthermore, the structure of the tree is very compact, only requiring branching
/// where multiple paths with the same prefix diverge. As a result, the depth of the
/// tree is typically much less than the depth of the corresponding directory hierarchy,
/// and is always bounded by the depth of the directory structure itself.
///
/// This data structure is lexicographically ordered, and can be reified as a flat set
/// of paths, or traversed like a tree.
pub struct PathPrefixTree<V> {
tree: PrefixTree,
/// Storage for the data associated with nodes in the tree
data: Vec<V>,
}
impl<V> Default for PathPrefixTree<V> {
fn default() -> Self {
Self {
tree: PrefixTree::default(),
data: vec![],
}
}
}
impl<V: Clone> Clone for PathPrefixTree<V> {
fn clone(&self) -> Self {
let tree = self.tree.clone();
let data = self.data.clone();
Self { tree, data }
}
}
impl<'a, V> FromIterator<&'a str> for PathPrefixTree<V>
where
V: Default,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = &'a str>,
{
let mut tree = Self::default();
for path in iter {
tree.insert(path, V::default());
}
tree
}
}
impl<'a, V> FromIterator<&'a Path> for PathPrefixTree<V>
where
V: Default,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = &'a Path>,
{
let mut tree = Self::default();
for path in iter {
tree.insert(path, V::default());
}
tree
}
}
impl<V, P> FromIterator<(P, V)> for PathPrefixTree<V>
where
P: AsRef<Path>,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = (P, V)>,
{
let mut tree = Self::default();
for (path, value) in iter {
tree.insert(path.as_ref(), value);
}
tree
}
}
impl<V> PathPrefixTree<V> {
/// Get a new, empty [PathPrefixTree]
pub fn new() -> Self {
Self::default()
}
/// Insert `path` in this tree with the given value associated with the resulting node.
///
/// If `path` is already contained in this tree (using the definition of containment
/// as described in `contains`), then this operation will replace the value for that node.
pub fn insert<P: AsRef<Path>>(&mut self, path: P, value: V) {
self.try_insert(path, value).expect("insert failed")
}
/// Try to insert `path` in this tree with the given value associated with the resulting node.
///
/// If `path` is already contained in this tree (using the definition of containment
/// as described in `contains`), then this operation will replace the value for that node,
/// unless the file type for that node is in conflict, in which case an error will be returned.
pub fn try_insert<P: AsRef<Path>>(&mut self, path: P, value: V) -> Result<(), TryInsertError> {
let data = DataKey(self.data.len());
self.data.push(value);
self.tree.insert(path.as_ref(), data)
}
/// Reset this tree to its default, empty state.
pub fn clear(&mut self) {
self.tree.clear();
self.data.clear();
}
/// Returns true if `path` has been inserted in this tree.
pub fn contains<P: AsRef<Path>>(&self, path: P) -> bool {
self.tree.contains(path.as_ref())
}
/// Get a reference to the data associated with `path`, if present in the tree
pub fn get<P: AsRef<Path>>(&self, path: P) -> Option<&V> {
let key = self.tree.get(path.as_ref())?;
Some(&self.data[key.as_usize()])
}
/// Get a mutable reference to the data associated with `path`, if present in the tree
pub fn get_mut<P: AsRef<Path>>(&mut self, path: P) -> Option<&mut V> {
let key = self.tree.get(path.as_ref())?;
Some(&mut self.data[key.as_usize()])
}
/// Get the nearest entry in the tree which is an ancestor of `path`
pub fn nearest_ancestor<P: AsRef<Path>>(&self, path: P) -> Option<Entry<'_, V>> {
self.tree
.nearest_ancestor(path.as_ref())
.map(|(path, key)| Entry {
path,
data: &self.data[key.as_usize()],
})
}
/// Iterate over all of the entries inserted in this tree.
pub fn iter(&self) -> impl Iterator<Item = Entry<'_, V>> + '_ {
Dfs::new(self, /*only_leaves=*/ false, None)
}
/// Iterate over all of the entries inserted in this tree,
/// with a path that refers to a file.
///
/// This is like `iter`, but does not emit entries for directories.
pub fn files(&self) -> impl Iterator<Item = Entry<'_, V>> + '_ {
Dfs::new(self, /*only_leaves=*/ true, None)
}
/// Iterate over all entries in the tree which are descendants of `path`.
///
/// If `max_depth` is set, the search is restricted to entries with a path
/// containing no more than `max_depth` additional path components than
/// `path` itself.
///
/// For example, with a tree containing `/foo/bar`, `/foo/bar/baz` and
/// `/foo/bar/baz/qux`, calling this function with `/foo/bar` and a max depth
/// of 2, will only return `/foo/bar/baz`, not `foo/bar/baz/qux`, since
/// the latter is 2 levels deeper in the hierarchy.
pub fn children<P: AsRef<Path>>(
&self,
path: P,
max_depth: Option<usize>,
) -> impl Iterator<Item = Entry<'_, V>> + '_ {
Dfs::at(self, path.as_ref(), /*only_leaves=*/ false, max_depth)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum PathType {
/// The path does not exist, and we've observed no descendant paths yet
Unknown,
/// The path is known to exist, and is not a directory
File,
/// The path is either known to exist and is a directory, or was previously
/// Unknown, but one or more descendant paths have been observed, which
/// dictates that this path must be a directory.
Dir,
}
/// This is the type-erased implementation backing [PathPrefixTree]
#[derive(Default, Clone)]
struct PrefixTree {
/// We permit multiple top-level root nodes in this tree,
/// making it actually a forest, but you could also think
/// of this field as representing children of a theoretical
/// "top" node that is the parent of all possible paths.
///
/// On a Unix system, that would implicitly be `/`, but on
/// Windows there can be multiple prefixes, e.g. `C:\`, etc.
roots: Vec<Node>,
}
impl PrefixTree {
/// Insert `path` into this tree with `data`
pub fn insert(&mut self, path: &Path, data: DataKey) -> Result<(), TryInsertError> {
let (path, ty) = canonicalize_and_type(path);
// Try to find existing root to insert into
if let Some(sort) = self.try_insert_existing(&path, ty, data)? {
// Found root with common prefix
if sort {
self.roots.sort();
}
return Ok(());
}
self.insert_new(path.into_owned(), ty, data);
Ok(())
}
fn try_insert_existing(
&mut self,
path: &Path,
ty: PathType,
data: DataKey,
) -> Result<Option<bool>, TryInsertError> {
for root in self.roots.iter_mut() {
if root.has_common_prefix(path) {
// If we modified `root` due to this insertion, require `roots` to be re-sorted
return insert_into_prefix(root, path, ty, data).map(|depth| Some(depth == 0));
}
}
Ok(None)
}
fn insert_new(&mut self, mut path: PathBuf, ty: PathType, data: DataKey) {
// Create new root node
let root = match ty {
PathType::Dir => Node::Branch {
component: path,
children: vec![],
data: Some(data),
},
ty @ (PathType::Unknown | PathType::File) => {
let mut components = path.components();
let file = PathBuf::from(components.next_back().unwrap().as_os_str());
let child = Node::Leaf {
component: file,
ty,
data: Some(data),
};
path.pop();
Node::Branch {
component: path,
children: vec![child],
data: None,
}
}
};
// Insert the new root node, and ensure the roots are ordered
self.roots.push(root);
self.roots.sort();
}
/// Reset this tree to its default, empty state.
pub fn clear(&mut self) {
self.roots.clear();
}
pub fn contains(&self, path: &Path) -> bool {
let (path, _) = canonicalize_and_type(path);
self.roots.iter().any(|root| root.contains(&path))
}
pub fn get(&self, path: &Path) -> Option<DataKey> {
let (path, _) = canonicalize_and_type(path);
self.roots.iter().find_map(|root| {
if root.has_common_prefix(&path) {
root.get(&path).and_then(|n| n.data())
} else {
None
}
})
}
pub fn nearest_ancestor(&self, path: &Path) -> Option<(PathBuf, DataKey)> {
let (path, _) = canonicalize_and_type(path);
self.roots
.iter()
.find_map(|root| root.nearest_ancestor(&path))
}
}
/// This is similar to `Path::canonicalize`, except it does a few things differently:
///
/// * If the given path cannot be canonicalized the "standard" way, we use a fallback
/// method as described in the following points.
/// * In the fallback canonicalization, the path type is always Unknown. If such a path
/// is inserted in the tree, it may become Dir if descendant paths are inserted in the
/// tree.
/// * As a result of the above this does not try to determine if a file path is treated as a
/// directory, e.g. `/foo/bar.txt/qux`. We assume that the user of the [PathPrefixTree] is
/// either validating paths themselves, or is ok with invalid paths.
/// * The fallback canonicalization only partially expands parent references (i.e. `..`). When
/// these occur at the start of the path, they are preserved, not expanded. When they occur
/// following some other type of path component, they cause that component to be dropped, and
/// the `..` is considered resolved (and also dropped).
fn canonicalize_and_type<'a>(path: &'a Path) -> (Cow<'a, Path>, PathType) {
use smallvec::SmallVec;
use std::path::Component;
const PATH_SEPARATOR_SIZE: usize = std::path::MAIN_SEPARATOR_STR.as_bytes().len();
if let Ok(path) = path.canonicalize() {
let path: Cow<'a, Path> = Cow::Owned(path);
let ty = match path.metadata() {
Err(_) => PathType::Unknown,
Ok(metadata) => {
if metadata.is_dir() {
PathType::Dir
} else {
PathType::File
}
}
};
return (path, ty);
}
let mut components = SmallVec::<[Component; 4]>::default();
let mut canonical = true;
let mut size_in_bytes = 0;
for component in path.components() {
match component {
component @ (Component::Normal(_) | Component::RootDir | Component::Prefix(_)) => {
size_in_bytes += component.as_os_str().len() + PATH_SEPARATOR_SIZE;
components.push(component);
}
// This only occurs when `.` is the first path component, so drop this
// component as we automatically assume relative paths are relative to
// the current working directory
Component::CurDir => {
canonical = false;
}
// This occurs when `..` is found anywhere in the path. We normalize
// these by dropping the preceding component when there is a preceding
// component, and when it is not `..`. If there are no preceding
// components, then `..` becomes the first component.
Component::ParentDir => match components.last() {
None | Some(Component::ParentDir) => {
let component = Component::ParentDir;
size_in_bytes += component.as_os_str().len() + PATH_SEPARATOR_SIZE;
components.push(component);
}
Some(_) => {
canonical = false;
let component = unsafe { components.pop().unwrap_unchecked() };
size_in_bytes -= component.as_os_str().len() + PATH_SEPARATOR_SIZE;
}
},
}
}
// If `path` is already canonical, return it unmodified
if canonical {
return (Cow::Borrowed(path), PathType::Unknown);
}
// Otherwise, we need to construct the canonical path
let mut path = PathBuf::with_capacity(size_in_bytes);
for component in components.into_iter() {
path.push(component);
}
(Cow::Owned(path), PathType::Unknown)
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct DataKey(usize);
impl DataKey {
#[inline(always)]
const fn as_usize(self) -> usize {
self.0
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum Prefix {
/// The node path exactly equals the input path
Exact,
/// The input path is an ancestor of the node path.
Ancestor,
/// The input path is a child of the node path
Child,
/// The input path and node path diverge, and the
/// given path is the common prefix of the two.
Partial(PathBuf),
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Node {
/// A leaf node is always a file
Leaf {
component: PathBuf,
ty: PathType,
data: Option<DataKey>,
},
/// A branch node is always a directory, and may have zero or more children
Branch {
component: PathBuf,
children: Vec<Node>,
data: Option<DataKey>,
},
}
impl Ord for Node {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.component().cmp(other.component())
}
}
impl PartialOrd for Node {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Node {
/// Get the path component for this node
#[inline]
pub fn component(&self) -> &Path {
match self {
Self::Leaf { ref component, .. } | Self::Branch { ref component, .. } => {
component.as_path()
}
}
}
/// Get the data key for this node, if applicable
#[inline]
pub fn data(&self) -> Option<DataKey> {
match self {
Self::Leaf { ref data, .. } | Self::Branch { ref data, .. } => *data,
}
}
/// Returns the common prefix with `path`.
///
/// If `None`, there is no common prefix.
///
/// If `Some`, see the docs for [PrefixMatch] for details on what the various
/// match types mean.
pub fn common_prefix(&self, path: &Path) -> Option<Prefix> {
assert_ne!(
path,
Path::new(""),
"invalid empty path given to common_prefix"
);
let mut ac = self.component().components();
let mut bc = path.components();
let mut common_prefix = PathBuf::new();
loop {
match (ac.next(), bc.next()) {
// We've reached the end of the components of `self`, so we've
// got at least some common prefix with `path`, go ahead and return
// it without further consideration.
(None, None) => break Some(Prefix::Exact),
(None, Some(_)) => break Some(Prefix::Child),
// The next component in both paths is common, so append it to
// our common prefix.
(Some(a), Some(b)) if a == b => {
common_prefix.push(a);
}
// We diverge from `path` here.
(Some(_), Some(_)) => {
if common_prefix == Path::new("") {
break None;
} else {
break Some(Prefix::Partial(common_prefix));
}
}
// We've reached the end of the components of `path` before `self`.
// This indicates that `path` is shallower than `self`, and thus `self`
// must be split to accomodate `path`.
(Some(_), None) => {
break Some(Prefix::Ancestor);
}
}
}
}
/// Returns true if `self` has a common prefix with `path`.
pub fn has_common_prefix(&self, path: &Path) -> bool {
assert_ne!(
path,
Path::new(""),
"invalid empty path given to has_common_prefix"
);
let mut ac = self.component().components();
let mut bc = path.components();
let mut has_minimum_prefix = false;
loop {
match (ac.next(), bc.next()) {
(None, _) => break true,
(Some(a), Some(b)) if a == b => {
has_minimum_prefix = true;
}
(Some(_), Some(_)) => break has_minimum_prefix,
(Some(_), None) => break true,
}
}
}
/// Returns true if `path` is explicitly represented under this node
///
/// Explicit representation means there is a `Node` in the tree whose full path
/// is equal to `path`. Implicit representation is only applicable to directories,
/// and refers to when there is a `Node` in the tree for which `path` is a prefix,
/// but the full path for that node refers to an item deeper in the directory tree,
/// e.g. `/foo/bar` is implicitly represented by a node whose path is `/foo/bar/baz.txt`
pub fn contains(&self, mut path: &Path) -> bool {
let mut next = Some(self);
while let Some(node) = next.take() {
match node {
Self::Branch {
ref component,
ref children,
ref data,
} => {
if let Ok(rest) = path.strip_prefix(component) {
if rest == Path::new("") {
return data.is_some();
}
match children.iter().position(|c| c.has_common_prefix(rest)) {
Some(index) => {
path = rest;
next = Some(&children[index]);
continue;
}
None => {
// the remainder of `path` is not covered by any children
break;
}
}
} else {
// `component` may have a common prefix with `path`, but `path` is
// not explicitly represented in the tree, so we must return false
break;
}
}
Self::Leaf {
ref component,
ref data,
..
} => {
// `component` may have a common prefix with `path`, but unless `path`
// is equal to `component`, it is not explicitly represented in the tree
return path == component && data.is_some();
}
}
}
false
}
pub fn get<'a>(&'a self, mut path: &Path) -> Option<&'a Node> {
let mut next = Some(self);
while let Some(node) = next.take() {
match node {
Self::Branch {
ref component,
ref children,
..
} => {
if let Ok(rest) = path.strip_prefix(component) {
if rest == Path::new("") {
return Some(node);
}
match children.iter().position(|c| c.has_common_prefix(rest)) {
Some(index) => {
path = rest;
next = Some(&children[index]);
continue;
}
None => {
break;
}
}
}
}
Self::Leaf { ref component, .. } => {
if path == component {
return Some(node);
}
break;
}
}
}
None
}
/// Return the path and data key associated with it, which is the nearest
/// ancestor of `path`, with data, represented under this node.
///
/// For example, consider a tree in which `/foo/bar/baz/qux.txt` and
/// `/foo/bar/qux2.txt` are both inserted:
///
/// * Given `/foo/bar/baz/other.txt` this function will select `/foo/bar/qux2.txt`,
/// because `/foo/bar/baz/qux.txt` is a sibling, but not an ancestor.
/// * Given `/foo/bar/qux2.txt`, it will select None, because there is no ancestor
/// explicitly represented in the tree for this path
/// * Given `/foo/bar/baz/qux.txt`, it will select `/foo/bar/qux2.txt`, because
/// `/foo/bar/baz/qux.txt` is not an ancestor of itself, and its nearest ancestor
/// is the selected path.
pub fn nearest_ancestor(&self, mut path: &Path) -> Option<(PathBuf, DataKey)> {
use smallvec::SmallVec;
if !self.has_common_prefix(path) {
return None;
}
let mut candidates = SmallVec::<[(PathBuf, DataKey); 2]>::default();
let mut ancestor = PathBuf::new();
let mut next = Some(self);
while let Some(node) = next.take() {
match node {
Self::Branch {
ref component,
ref children,
data,
} => {
if let Ok(rest) = path.strip_prefix(component) {
// We found `path`, so take the most recent candidate,
// if one is available. If not, then there are no nearest
// ancestors for `path`
if rest == Path::new("") {
return candidates.pop();
}
// Otherwise, find the next child node to descend into.
// If a suitable candidate is found, and the current node
// has data associated with it, push the current path as
// a candidate node, and check the child node to see if it
// is closer.
//
// If no suitable candidate is found, but the current node
// has data associated with it, then the current node is the
// nearest ancestor, so we can just return it. If it has no
// data, then the most recent candidate is returned, if available.
ancestor.push(component);
let child = children.iter().position(|c| c.has_common_prefix(rest));
if let Some(index) = child {
if let Some(data) = *data {
candidates.push((ancestor.clone(), data));
}
path = rest;
next = Some(&children[index]);
continue;
} else {
return data
.map(|data| (ancestor, data))
.or_else(|| candidates.pop());
}
} else {
// To insert `path` in the tree, we'd have to split `node`, which
// means the most recent candidate is the nearest ancestor, if we
// have one
return candidates.pop();
}
}
// Leaf nodes by definition cannot be the nearest ancestor, so use
// the most recent candidate, if we have one
Self::Leaf { .. } => return candidates.pop(),
}
}
None
}
fn take(&mut self, prefix: &Path) -> Self {
match self {
Node::Branch {
ref component,
ref mut children,
ref mut data,
} => {
let component = component.strip_prefix(prefix).unwrap().to_path_buf();
Node::Branch {
component,
children: core::mem::take(children),
data: data.take(),
}
}
Node::Leaf {
ref component,
ref mut data,
ty,
} => {
let component = component.strip_prefix(prefix).unwrap().to_path_buf();
Node::Leaf {
component,
ty: *ty,
data: data.take(),
}
}
}
}
fn split_at(&mut self, common_prefix: PathBuf) {
let split = self.take(&common_prefix);
*self = Node::Branch {
component: common_prefix,
children: vec![split],
data: None,
};
}
fn set_type(&mut self, ty: PathType) -> Result<(), TryInsertError> {
match self {
Self::Leaf {
ref mut component,
ref mut data,
ty: ref mut prev_ty,
..
} => match ty {
PathType::Unknown | PathType::File => *prev_ty = ty,
PathType::Dir => {
let component = core::mem::replace(component, PathBuf::new());
let data = data.take();
*self = Self::Branch {
component,
data,
children: vec![],
};
}
},
Self::Branch { .. } => match ty {
PathType::Dir => (),
PathType::Unknown | PathType::File => return Err(TryInsertError::PathTypeConflict),
},
}
Ok(())
}
fn set_data(&mut self, data: DataKey) {
match self {
Self::Branch {
data: ref mut prev_data,
..
}
| Self::Leaf {
data: ref mut prev_data,
..
} => {
*prev_data = Some(data);
}
}
}
fn push_child(
&mut self,
component: PathBuf,
ty: PathType,
data: Option<DataKey>,
) -> Result<(), TryInsertError> {
let child = match ty {
PathType::File | PathType::Unknown => Self::Leaf {
component,
ty,
data,
},
PathType::Dir => Self::Branch {
component,
children: vec![],
data,
},
};
match self {
Self::Branch {
ref mut children, ..
} => {
children.push(child);
children.sort();
}
Self::Leaf {
component: ref mut parent_component,
data: ref mut parent_data,
ty: PathType::Unknown,
} => {
let children = vec![child];
let component = core::mem::replace(parent_component, PathBuf::new());
let data = parent_data.take();
*self = Self::Branch {
component,
children,
data,
};
}
Self::Leaf { .. } => return Err(TryInsertError::PathTypeConflict),
}
Ok(())
}
fn try_insert_new<'a>(
&'a mut self,
path: &Path,
component: &Path,
ty: PathType,
data: Option<DataKey>,
) -> Either<Result<(), TryInsertError>, &'a mut Node> {
match self {
Self::Branch {
ref mut children, ..
} => {
if let Some(index) = children.iter().position(|c| c.has_common_prefix(component)) {
// We can't insert this as new, but the given index is a child we can try to insert into next
return Right(&mut children[index]);
}
let child = match ty {
PathType::File | PathType::Unknown => Self::Leaf {
component: component.to_path_buf(),
ty,
data,
},
PathType::Dir => Self::Branch {
component: component.to_path_buf(),
children: vec![],
data,
},
};
children.push(child);
children.sort();
Left(Ok(()))
}
Self::Leaf {
ty: PathType::File, ..
} => Left(Err(TryInsertError::Unreachable(path.to_path_buf()))),
Self::Leaf {
component: ref mut parent_component,
data: ref mut parent_data,
..
} => {
let child = match ty {
PathType::File | PathType::Unknown => Self::Leaf {
component: component.to_path_buf(),
ty,
data,
},
PathType::Dir => Self::Branch {
component: component.to_path_buf(),
children: vec![],
data,
},
};
let children = vec![child];
let component = core::mem::replace(parent_component, PathBuf::new());
let data = parent_data.take();
*self = Self::Branch {
component,
children,
data,
};
Left(Ok(()))
}
}
}
}
/// Insert `path` into `node` which contains a prefix of `path`.
///
/// Returns the depth relative to `node` where `path` is inserted, a depth
/// of zero indicates that `node` itself was modified.
#[inline(never)]
fn insert_into_prefix(
node: &mut Node,
mut path: &Path,
ty: PathType,
data: DataKey,
) -> Result<usize, TryInsertError> {
let orig_path = path;
let mut next = Some((node, 0));
loop {
let (node, depth) = next.take().unwrap();
if let Some(prefix) = node.common_prefix(path) {
match prefix {
Prefix::Exact => {
node.set_type(ty)?;
node.set_data(data);
break Ok(depth);
}
Prefix::Child => {
path = path.strip_prefix(node.component()).unwrap();
match node.try_insert_new(orig_path, path, ty, Some(data)) {
Left(result) => {
result?;
break Ok(depth + 1);
}
Right(next_child) => {
next = Some((next_child, depth + 1));
continue;
}
}
}
Prefix::Ancestor => {
node.split_at(path.to_path_buf());
node.set_data(data);
break Ok(depth);
}
Prefix::Partial(common_prefix) => {
let component = path.strip_prefix(&common_prefix).unwrap().to_path_buf();
node.split_at(common_prefix);
node.push_child(component, ty, Some(data))?;
break Ok(depth);
}
}
}
}
}
#[derive(Debug)]
struct DfsVisitor<'a> {
worklist: &'a [Node],
prefix: PathBuf,
component_prefix: PathBuf,
queued: Option<(PathBuf, usize, &'a [Node])>,
depth: usize,
only_leaves: bool,
}
impl<'a> DfsVisitor<'a> {
fn new(prefix: PathBuf, worklist: &'a [Node], depth: usize, only_leaves: bool) -> Self {
Self {
worklist,
prefix,
component_prefix: PathBuf::new(),
queued: None,
depth,
only_leaves,
}
}
pub fn next(
&mut self,
max_depth: Option<usize>,
) -> Option<Either<(PathBuf, DataKey), DfsVisitor<'a>>> {
if let Some((prefix, relative_depth, worklist)) = self.queued.take() {
return Some(Right(DfsVisitor::new(
prefix,
worklist,
relative_depth,
self.only_leaves,
)));
}
loop {
match self.worklist.split_first()? {
(Node::Leaf { data: None, .. }, worklist) => {
self.worklist = worklist;
continue;
}
(
Node::Leaf {
ref component,
data: Some(data),
..
},
worklist,
) => {
self.worklist = worklist;
if self.exceeds_max_depth(component, max_depth) {
continue;
}
let suffix = self.strip_prefix(component);
let prefix = self.prefix.join(suffix);
break Some(Left((prefix, *data)));
}
(
Node::Branch {
ref component,
ref children,
data,
},
worklist,
) => {
self.worklist = worklist;
let relative_depth = self.relative_depth(component, max_depth);
if let Some(max_depth) = max_depth {
if relative_depth > max_depth {
continue;
}
}
let suffix = self.strip_prefix(component);
let prefix = self.prefix.join(suffix);
if !children.is_empty() {
match data {
// We have to emit the branch node first, so save the descent
// information for the next time `next` is called
Some(data) => {
self.queued =
Some((prefix.clone(), relative_depth, children.as_slice()));
break Some(Left((prefix, *data)));
}
// We don't need to emit the branch node, so return a new visitor
// to start descending into the children
None => {
break Some(Right(DfsVisitor::new(
prefix,
children.as_slice(),
relative_depth,
self.only_leaves,
)));
}
}
}
}
}
}
}
fn exceeds_max_depth(&self, path: &Path, max_depth: Option<usize>) -> bool {
match max_depth {
None => false,
Some(max_depth) => {
let suffix = self.strip_prefix(path);
let relative_depth = self.depth + suffix.components().count();
relative_depth > max_depth
}
}
}
fn relative_depth(&self, path: &Path, max_depth: Option<usize>) -> usize {
match max_depth {
// If we don't care about the depth, do nothing
None => 0,
Some(_) => {
let suffix = self.strip_prefix(path);
self.depth + suffix.components().count()
}
}
}
#[inline]
fn strip_prefix<'p>(&self, path: &'p Path) -> &'p Path {
if self.component_prefix == Path::new("") {
return path;
}
path.strip_prefix(&self.component_prefix).unwrap()
}
}
struct Dfs<'a, V> {
data: &'a [V],
stack: Vec<DfsVisitor<'a>>,
current: DfsVisitor<'a>,
max_depth: Option<usize>,
}
impl<V> core::fmt::Debug for Dfs<'_, V> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Dfs")
.field("stack", &self.stack)
.field("current", &self.current)
.field("max_depth", &self.max_depth)
.finish()
}
}
impl<'a, V> Dfs<'a, V> {
fn new(tree: &'a PathPrefixTree<V>, only_leaves: bool, max_depth: Option<usize>) -> Self {
Self {
data: tree.data.as_slice(),
stack: vec![],
current: DfsVisitor::new(PathBuf::new(), tree.tree.roots.as_slice(), 0, only_leaves),
max_depth,
}
}
fn at(
tree: &'a PathPrefixTree<V>,
path: &Path,
only_leaves: bool,
max_depth: Option<usize>,
) -> Self {
// Traverse tree until we find our initial working set
match tree
.tree
.roots
.iter()
.find(|root| root.has_common_prefix(path))
{
None => return Self::empty(tree, only_leaves, max_depth),
Some(root) => {
let mut next = Some(root);
let mut input_path = path;
let mut prefix = PathBuf::new();
loop {
let node = next.take().unwrap();
match node.common_prefix(input_path) {
// No children for `path` in this tree
None => break Self::empty(tree, only_leaves, max_depth),
Some(Prefix::Exact) => {
break Self {
data: tree.data.as_slice(),
stack: vec![],
current: DfsVisitor::new(
prefix,
core::slice::from_ref(node),
0,
only_leaves,
),
max_depth,
};
}
// This node is the first child, as long as it is not deeper than `max_depth`
Some(Prefix::Ancestor) => {
prefix.push(input_path);
break Self {
data: tree.data.as_slice(),
stack: vec![],
current: DfsVisitor {
component_prefix: PathBuf::from(input_path),
..DfsVisitor::new(
prefix,
core::slice::from_ref(node),
0,
only_leaves,
)
},
max_depth,
};
}
// We need to recurse deeper into the tree to find potential children
Some(Prefix::Child) => {
match node {
Node::Branch {
ref component,
ref children,
..
} => {
input_path = input_path.strip_prefix(component).unwrap();
next =
children.iter().find(|c| c.has_common_prefix(input_path));
if next.is_none() {
break Self::empty(tree, only_leaves, max_depth);
}
prefix.push(component);
}
// There are no children for `path`, so return an empty iterator
Node::Leaf { .. } => {
break Self::empty(tree, only_leaves, max_depth)
}
}
}
// There can be no children of `path` under `node`
Some(Prefix::Partial(_)) => {
break Self::empty(tree, only_leaves, max_depth)
}
}
}
}
}
}
#[inline]
fn empty(tree: &'a PathPrefixTree<V>, only_leaves: bool, max_depth: Option<usize>) -> Self {
Self {
data: tree.data.as_slice(),
stack: vec![],
current: DfsVisitor::new(PathBuf::new(), &[], 0, only_leaves),
max_depth,
}
}
}
impl<'a, V> Iterator for Dfs<'a, V> {
type Item = Entry<'a, V>;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.current.next(self.max_depth) {
// No more nodes at this depth
None => {
// Try to resume iteration at the next level up, else we're done
self.current = self.stack.pop()?;
}
// Visitor produced the next element at this depth
Some(Left((path, key))) => {
return Some(Entry {
path,
data: &self.data[key.as_usize()],
});
}
// Visitor has indicated we should suspend iteration at this
// depth and descend into a child node first
Some(Right(visitor)) => {
let suspended = core::mem::replace(&mut self.current, visitor);
self.stack.push(suspended);
}
}
}
}
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use super::*;
#[test]
fn path_tree_insert() {
// Tests:
// * insertion in a clean tree
// * insertion under an existing node
// * insertion in a dirty tree
let tree = PathPrefixTree::<()>::from_iter(["/foo/bar", "/foo/bar/baz", "/qux"]);
let child = Node::Leaf {
component: PathBuf::from("baz"),
ty: PathType::Unknown,
data: Some(DataKey(1)),
};
let a = Node::Branch {
component: PathBuf::from("foo"),
children: vec![Node::Branch {
component: PathBuf::from("bar"),
children: vec![child],
data: Some(DataKey(0)),
}],
data: None,
};
let b = Node::Leaf {
component: PathBuf::from("qux"),
ty: PathType::Unknown,
data: Some(DataKey(2)),
};
let root = Node::Branch {
component: PathBuf::from("/"),
children: vec![a, b],
data: None,
};
assert_eq!(tree.tree.roots.as_slice(), &[root]);
}
#[test]
fn path_tree_nearest_ancestor() {
let tree = PathPrefixTree::<()>::from_iter(["/foo/bar", "/foo/bar/baz", "/qux"]);
assert_eq!(
tree.nearest_ancestor("/foo/bar/baz").map(Entry::into_path),
Some(PathBuf::from("/foo/bar"))
);
assert_eq!(
tree.nearest_ancestor("/foo/bar").map(Entry::into_path),
None
);
assert_eq!(tree.nearest_ancestor("/qux").map(Entry::into_path), None);
}
#[test]
fn path_tree_contains() {
let tree = PathPrefixTree::<()>::from_iter(["/foo/bar", "/foo/bar/baz", "/qux"]);
assert!(tree.contains("/foo/bar/baz"));
assert!(tree.contains("/foo/bar"));
assert!(!tree.contains("/foo"));
assert!(!tree.contains("/foo/bar/baz/thing.txt"));
}
#[test]
fn path_tree_get() {
let mut tree = PathPrefixTree::default();
tree.insert("/foo/bar/baz", 1usize);
tree.insert("/foo/bar/baz/qux", 2usize);
assert_eq!(tree.get("/foo/bar/baz/qux").copied(), Some(2));
assert_eq!(tree.get("/foo/bar/baz").copied(), Some(1));
}
#[test]
fn path_tree_iter() {
let tree = PathPrefixTree::<()>::from_iter(["/qux", "/foo/bar/baz", "/foo/bar"]);
let paths = tree.iter().map(|e| e.into_path()).collect::<Vec<_>>();
let expected = vec![
PathBuf::from("/foo/bar"),
PathBuf::from("/foo/bar/baz"),
PathBuf::from("/qux"),
];
assert_eq!(paths, expected);
}
#[test]
fn path_tree_children() {
let tree = PathPrefixTree::<()>::from_iter(["/qux", "/foo/bar/baz", "/foo/bar"]);
let paths = tree
.children("/foo/bar", None)
.map(|e| e.into_path())
.collect::<Vec<_>>();
let expected = vec![PathBuf::from("/foo/bar"), PathBuf::from("/foo/bar/baz")];
assert_eq!(paths, expected);
let paths = tree
.children("/foo", None)
.map(|e| e.into_path())
.collect::<Vec<_>>();
assert_eq!(paths, expected);
}
}