lis2dtw12/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
//! # LIS2DTW12
//! A platform agnostic driver to interface with the LIS2DTW12 (3-axis accelerometer + temperature sensor).
//! The driver uses the `embedded-hal` traits and supports interfaces with I2C and SPI.
//! The driver supports async and blocking modes, selectable with the `async` and `blocking` features.
//!
#![deny(missing_docs)]
#![deny(warnings)]
#![forbid(unsafe_code)]
#![cfg_attr(not(test), no_std)]
mod i2c;
mod register_data;
mod register_settings;
mod registers;
mod spi;
/// Interface module, contains the `Interface` trait and re-exports the `i2c` and `spi` modules
pub mod interface;
#[cfg(all(feature = "blocking", feature = "async"))]
compile_error!("feature \"blocking\" and feature \"async\" cannot be enabled at the same time");
#[cfg(not(any(feature = "blocking", feature = "async")))]
compile_error!("either feature \"blocking\" or feature \"async\" must be enabled");
use interface::Interface;
use registers::*;
pub use register_data::*;
pub use register_settings::*;
/// LIS2DTW12 driver
#[maybe_async_cfg::maybe(sync(feature = "blocking", keep_self), async(feature = "async"))]
pub struct Lis2dtw12<I> {
interface: I,
mode: Mode,
low_power_mode: LowPowerMode,
fullscale: FullScale,
}
/// LIS2DTW12 driver
#[maybe_async_cfg::maybe(sync(feature = "blocking", keep_self), async(feature = "async"))]
impl<I: Interface> Lis2dtw12<I> {
/// Create a new `LIS2DTW12` driver from a given interface
pub fn new(interface: I) -> Self {
Self {
interface,
mode: Mode::default(),
low_power_mode: LowPowerMode::default(),
fullscale: FullScale::default(),
}
}
/// Destroy the driver instance returning the interface instance
pub fn destroy(self) -> I {
self.interface
}
/// Read the WHO_AM_I register
pub async fn get_device_id(&mut self) -> Result<u8, I::Error> {
self.read_reg(Register::WHO_AM_I).await
}
/// Read the RAW temperature data
pub async fn get_temperature_raw(&mut self) -> Result<i16, I::Error> {
let mut buffer = [0; 2];
self.read_regs(Register::OUT_T_L, &mut buffer).await?;
Ok((buffer[1] as i16) << 8 | buffer[0] as i16)
}
/// Read the temperature data
pub async fn get_temperature(&mut self) -> Result<f32, I::Error> {
let mut buffer = [0; 2];
self.read_regs(Register::OUT_T_L, &mut buffer).await?;
let v = (buffer[1] as i16) << 8 | buffer[0] as i16;
Ok(25.0 + v as f32 / 256.0)
}
/// Set the Output Data Rate
pub async fn set_output_data_rate(&mut self, odr: OutputDataRate) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL1, |v| {
v & !ODR_MASK | (odr as u8) << ODR_SHIFT
})
.await
}
/// Set the Mode
pub async fn set_mode(&mut self, mode: Mode) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL1, |v| {
v & !MODE_MASK | (mode as u8) << MODE_SHIFT
})
.await?;
self.mode = mode;
Ok(())
}
/// Set the Low Power Mode
pub async fn set_low_power_mode(
&mut self,
low_power_mode: LowPowerMode,
) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL1, |v| {
v & !LP_MODE_MASK | (low_power_mode as u8) << LP_MODE_SHIFT
})
.await?;
self.low_power_mode = low_power_mode;
Ok(())
}
/// Reset all settings (CTRL registers to default)
pub async fn reset_settings(&mut self) -> Result<(), I::Error> {
self.reg_set_bits(Register::CTRL2, SOFT_RESET).await?;
self.mode = Mode::default();
self.low_power_mode = LowPowerMode::default();
Ok(())
}
/// (Dis-)connect CS pull-up (only relevant when using SPI interface)
pub async fn disconnect_cs_pull_up(&mut self, disconnect: bool) -> Result<(), I::Error> {
if disconnect {
self.reg_set_bits(Register::CTRL3, CS_PU_DISC).await
} else {
self.reg_reset_bits(Register::CTRL3, CS_PU_DISC).await
}
}
/// Enable or disable block data update
///
/// When enabled, the output registers are continously updated
///
/// When disabled, the output registers are updated only after MSB and LSB reading
///
/// Enabled by default
pub async fn enable_continuous_update(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL3, BDU).await
} else {
self.reg_reset_bits(Register::CTRL3, BDU).await
}
}
/// Set the bandwidth selection
pub async fn set_bandwidth(&mut self, bandwidth: BandwidthSelection) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL6, |v| {
v & !BW_FILT_MASK | (bandwidth as u8) << BW_FILT_SHIFT
})
.await
}
/// Set the full-scale selection
pub async fn set_full_scale(&mut self, full_scale: FullScale) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL6, |v| {
v & !FS_MASK | (full_scale as u8) << FS_SHIFT
})
.await?;
self.fullscale = full_scale;
Ok(())
}
/// Enable/Disable Filtered data type selection
///
/// disabled: low-pass filter path selected
///
/// enabled: high-pass filter path selected
///
/// Disabled by default
pub async fn enable_filtered_data_selection(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL6, FDS).await
} else {
self.reg_reset_bits(Register::CTRL6, FDS).await
}
}
/// Enable/Disable low-noise configuration
/// Disabled by default
pub async fn enable_low_noise(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL6, FDS).await
} else {
self.reg_reset_bits(Register::CTRL6, FDS).await
}
}
/// Get the status of the device
///
/// # NOTE
///
/// Status and Event Status registers are mostly the same with the exceptions:
/// - Status register reports the status of the FIFO threshold
///
/// **INSTEAD**
///
/// Event Status register reports the status of the FIFO overrun
/// - Status register reports the wake-up event detection status
///
/// **INSTEAD**
///
/// Event Status register reports the temperature data ready status
///
/// The rest is the same
pub async fn get_status(&mut self) -> Result<Status, I::Error> {
let status = self.read_reg(Register::STATUS).await?;
Ok(Status::from(status))
}
/// Get the Event Status register
///
/// # NOTE
///
/// Status and Event Status registers are mostly the same with the exceptions:
/// - Status register reports the status of the FIFO threshold
///
/// **INSTEAD**
///
/// Event Status register reports the status of the FIFO overrun
/// - Status register reports the wake-up event detection status
///
/// **INSTEAD**
///
/// Event Status register reports the temperature data ready status
///
/// The rest is the same
pub async fn get_event_status(&mut self) -> Result<EventStatus, I::Error> {
let status = self.read_reg(Register::STATUS_DUP).await?;
Ok(EventStatus::from(status))
}
/// Get the X-axis RAW acceleration data
///
/// # NOTE
///
/// The data is 12/14-bit (depending on [`Mode`](crate::Lis2dtw12::set_mode) and [`LowPowerMode`](crate::Lis2dtw12::set_low_power_mode)) left-justified!
pub async fn get_x_accel_raw(&mut self) -> Result<i16, I::Error> {
let mut buffer = [0; 2];
self.read_regs(Register::OUT_X_L, &mut buffer).await?;
Ok((buffer[1] as i16) << 8 | buffer[0] as i16)
}
/// Get the Y-axis RAW acceleration data
///
/// # NOTE
///
/// The data is 12/14-bit (depending on `Mode` and `LowPowerMode`) left-justified!
pub async fn get_y_accel_raw(&mut self) -> Result<i16, I::Error> {
let mut buffer = [0; 2];
self.read_regs(Register::OUT_Y_L, &mut buffer).await?;
Ok((buffer[1] as i16) << 8 | buffer[0] as i16)
}
/// Get the Z-axis RAW acceleration data
///
/// # NOTE
///
/// The data is 12/14-bit (depending on `Mode` and `LowPowerMode`) left-justified!
pub async fn get_z_accel_raw(&mut self) -> Result<i16, I::Error> {
let mut buffer = [0; 2];
self.read_regs(Register::OUT_Z_L, &mut buffer).await?;
Ok((buffer[1] as i16) << 8 | buffer[0] as i16)
}
/// Get the X-axis acceleration data
///
/// # Returns
///
/// - X-Acceleration in **mg**
pub async fn get_x_accel(&mut self) -> Result<f32, I::Error> {
let raw = self.get_x_accel_raw().await?;
Ok(self
.fullscale
.convert_raw_i16_to_mg(raw, self.mode, self.low_power_mode))
}
/// Get the Y-axis acceleration data
///
/// # Returns
///
/// - Y-Acceleration in **mg**
pub async fn get_y_accel(&mut self) -> Result<f32, I::Error> {
let raw = self.get_y_accel_raw().await?;
Ok(self
.fullscale
.convert_raw_i16_to_mg(raw, self.mode, self.low_power_mode))
}
/// Get the Z-axis acceleration data
///
/// # Returns
///
/// - Z-Acceleration in **mg**
pub async fn get_z_accel(&mut self) -> Result<f32, I::Error> {
let raw = self.get_z_accel_raw().await?;
Ok(self
.fullscale
.convert_raw_i16_to_mg(raw, self.mode, self.low_power_mode))
}
/// Get the RAW acceleration data
///
/// # NOTE
///
/// The data is 12/14-bit (depending on `Mode` and `LowPowerMode`) left-justified!
pub async fn get_accel_data_raw(&mut self) -> Result<RawAccelerationData, I::Error> {
let mut buffer = [0; 6];
self.read_regs(Register::OUT_X_L, &mut buffer).await?;
Ok(RawAccelerationData {
x: (buffer[1] as i16) << 8 | buffer[0] as i16,
y: (buffer[3] as i16) << 8 | buffer[2] as i16,
z: (buffer[5] as i16) << 8 | buffer[4] as i16,
})
}
/// Get the acceleration data
///
/// # Returns
///
/// - `AccelerationData` struct containing the acceleration data in **mg**
pub async fn get_accel_data(&mut self) -> Result<AccelerationData, I::Error> {
let raw = self.get_accel_data_raw().await?;
Ok(AccelerationData {
x: self
.fullscale
.convert_raw_i16_to_mg(raw.x, self.mode, self.low_power_mode),
y: self
.fullscale
.convert_raw_i16_to_mg(raw.y, self.mode, self.low_power_mode),
z: self
.fullscale
.convert_raw_i16_to_mg(raw.z, self.mode, self.low_power_mode),
})
}
/// Set the FIFO mode
pub async fn set_fifo_mode(&mut self, fifo_mode: FifoMode) -> Result<(), I::Error> {
self.modify_reg(Register::CTRL3, |v| {
v & !FMODE_MASK | (fifo_mode as u8) << FMODE_SHIFT
})
.await
}
/// Set the FIFO threshold
///
/// # NOTE
///
/// Fifo threshold is a 5-bit value (0-31).
///
/// If the given threshold value is greater than 31, it will be set to 31
pub async fn set_fifo_threshold(&mut self, threshold: u8) -> Result<(), I::Error> {
let t = threshold.clamp(0, 31);
self.modify_reg(Register::FIFO_CTRL, |v| v & !FTH_MASK | t << FTH_SHIFT)
.await
}
/// Get the FIFO samples status
pub async fn get_fifo_samples_status(&mut self) -> Result<FifoSamplesStatus, I::Error> {
let status = self.read_reg(Register::FIFO_SAMPLES).await?;
Ok(FifoSamplesStatus::from(status))
}
/// Enable 4D decection portrait/landscape position
///
/// Disabled by default
pub async fn enable_4d_detection(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::TAP_THS_X, EN_4D).await
} else {
self.reg_reset_bits(Register::TAP_THS_X, EN_4D).await
}
}
/// Set the 6D threshold
///
/// Thresholds for 4D/6D function @ FS = ±2g
pub async fn set_6d_threshold(&mut self, threshold: Threshold6D) -> Result<(), I::Error> {
self.modify_reg(Register::TAP_THS_X, |v| {
v & !THS_6D_MASK | (threshold as u8) << THS_6D_SHIFT
})
.await
}
/// Set the tap priority
///
/// Tap Priority axis selection for tap detection
pub async fn set_tap_priority(&mut self, tap_priority: TapPriority) -> Result<(), I::Error> {
self.modify_reg(Register::TAP_THS_Y, |v| {
v & !TAP_PRIOR_MASK | (tap_priority as u8) << TAP_PRIOR_SHIFT
})
.await
}
/// Enable X/Y/Z direction tap recognition
pub async fn enable_xyz_tap_detection(
&mut self,
x_enable: bool,
y_enable: bool,
z_enable: bool,
) -> Result<(), I::Error> {
let val = if x_enable { 0b100 } else { 0 }
| if y_enable { 0b010 } else { 0 }
| if z_enable { 0b001 } else { 0 };
self.modify_reg(Register::TAP_THS_Z, |v| {
v & TAP_XYZ_MASK | val << TAP_XYZ_SHIFT
})
.await
}
/// Set the tap Threshold for X direction
///
/// # NOTE
///
/// Threshold is a 5-bit value (0-31).
///
/// If the given threshold value is greater than 31, it will be set to 31
pub async fn set_x_tap_threshold(&mut self, threshold: u8) -> Result<(), I::Error> {
let t = threshold.clamp(0, 31);
self.modify_reg(Register::TAP_THS_X, |v| {
v & !TAP_THS_MASK | t << TAP_THS_SHIFT
})
.await
}
/// Set the tap Threshold for Y direction
///
/// # NOTE
///
/// Threshold is a 5-bit value (0-31).
///
/// If the given threshold value is greater than 31, it will be set to 31
pub async fn set_y_tap_threshold(&mut self, threshold: u8) -> Result<(), I::Error> {
let t = threshold.clamp(0, 31);
self.modify_reg(Register::TAP_THS_Y, |v| {
v & !TAP_THS_MASK | t << TAP_THS_SHIFT
})
.await
}
/// Set the tap Threshold for Z direction
///
/// # NOTE
///
/// Threshold is a 5-bit value (0-31).
///
/// If the given threshold value is greater than 31, it will be set to 31
pub async fn set_z_tap_threshold(&mut self, threshold: u8) -> Result<(), I::Error> {
let t = threshold.clamp(0, 31);
self.modify_reg(Register::TAP_THS_Z, |v| {
v & !TAP_THS_MASK | t << TAP_THS_SHIFT
})
.await
}
/// Duration of maximum time gap for double-tap recognition. When double-tap recognition is enabled, this
/// register expresses the maximum time between two successive detected taps to determine a double-tap event.
///
/// Default value is LATENCY[3:0] = 0000 (which is 16 * 1/ODR)
///
/// 1 LSB = 32 * 1/ODR
///
/// # NOTE
///
/// Latency is a 4-bit value (0-15).
///
/// If the given latency value is greater than 15, it will be set to 15
pub async fn set_double_tap_latency(&mut self, latency: u8) -> Result<(), I::Error> {
let l = latency.clamp(0, 15);
self.modify_reg(Register::INT_DUR, |v| {
v & !LATENCY_MASK | l << LATENCY_SHIFT
})
.await
}
/// Expected quiet time after a tap detection: this register represents the time after the first detected tap in which
/// there must not be any overthreshold event.
///
/// Default value is QUIET[1:0] = 00 (which is 2 * 1/ODR)
///
/// 1 LSB = 4 * 1/ODR
///
/// # NOTE
///
/// Quiet time is a 2-bit value (0-3).
///
/// If the given quiet time value is greater than 3, it will be set to 3
pub async fn set_tap_quiet_time(&mut self, quiet_time: u8) -> Result<(), I::Error> {
let q = quiet_time.clamp(0, 3);
self.modify_reg(Register::INT_DUR, |v| v & !QUIET_MASK | q << QUIET_SHIFT)
.await
}
/// Maximum duration of overthreshold event: this register represents the maximum time of an overthreshold
/// signal detection to be recognized as a tap event.
///
/// Default value is SHOCK[1:0] = 00 (which is 4 * 1/ODR)
/// 1 LSB = 8 *1/ODR
///
/// # NOTE
///
/// Shock time is a 2-bit value (0-3).
///
/// If the given shock time value is greater than 3, it will be set to 3
pub async fn set_tap_shock_time(&mut self, shock_time: u8) -> Result<(), I::Error> {
let s = shock_time.clamp(0, 3);
self.modify_reg(Register::INT_DUR, |v| v & !SHOCK_MASK | s << SHOCK_SHIFT)
.await
}
/// Enable/Disable double-tap detection
///
/// enabled: Single and double tap detection enabled
///
/// disabled: Only single tap detection enabled
///
/// Disabled by default
pub async fn enable_double_tap_detection(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::WAKE_UP_THS, SINGLE_DOUBLE_TAP)
.await
} else {
self.reg_reset_bits(Register::WAKE_UP_THS, SINGLE_DOUBLE_TAP)
.await
}
}
/// Enable/Disable sleep mode
///
/// enabled: Sleep mode enabled
///
/// disabled: Sleep mode disabled
///
/// Disabled by default
pub async fn enable_sleep_mode(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::WAKE_UP_THS, SLEEP_ON).await
} else {
self.reg_reset_bits(Register::WAKE_UP_THS, SLEEP_ON).await
}
}
/// Set the wake-up threshold
///
/// Wake-up threshold, 6-bit unsigned 1 LSB = 1/64 of FS.
///
/// Default value: 000000
///
/// # NOTE
///
/// Threshold is a 6-bit value (0-63).
///
/// If the given threshold value is greater than 63, it will be set to 63
pub async fn set_wake_up_threshold(&mut self, threshold: u8) -> Result<(), I::Error> {
let t = threshold.clamp(0, 63);
self.modify_reg(Register::WAKE_UP_THS, |v| {
v & !WK_THS_MASK | t << WK_THS_SHIFT
})
.await
}
/// Set the wake-up duration
///
/// Wake-up duration. 1 LSB = 1 *1/ODR
///
/// # NOTE
///
/// Duration is a 2-bit value (0-3).
///
/// If the given duration value is greater than 3, it will be set to 3
pub async fn set_wake_up_duration(&mut self, duration: u8) -> Result<(), I::Error> {
let d = duration.clamp(0, 3);
self.modify_reg(Register::WAKE_UP_DUR, |v| {
v & !WK_DUR_MASK | d << WK_DUR_SHIFT
})
.await
}
/// Enable/Disable stationary detection / motion detection with no automatic ODR change
/// when detecting stationary state
///
/// enabled: Stationary detection enabled
///
/// disabled: Stationary detection disabled
///
/// Disabled by default
pub async fn enable_stationary_detection(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::WAKE_UP_DUR, STATIONARY).await
} else {
self.reg_reset_bits(Register::WAKE_UP_DUR, STATIONARY).await
}
}
/// Set duration to go i nsleep mode
///
/// Default value is SLEEP_ DUR[3:0] = 0000 (which is 16 * 1/ODR).
///
/// 1 LSB = 512 * 1/ODR
///
/// # NOTE
///
/// Duration is a 4-bit value (0-15).
///
/// If the given duration value is greater than 15, it will be set to 15
pub async fn set_sleep_duration(&mut self, duration: u8) -> Result<(), I::Error> {
let d = duration.clamp(0, 15);
self.modify_reg(Register::WAKE_UP_DUR, |v| {
v & !SLEEP_DUR_MASK | d << SLEEP_DUR_SHIFT
})
.await
}
/// Set the free-fall duration
///
/// 1 LSB = 1 * 1/ODR
///
/// Default value is FF_DUR[5:0] = 000000
///
/// # NOTE
///
/// Duration is a 6-bit value (0-63).
///
/// If the given duration value is greater than 63, it will be set to 63
pub async fn set_free_fall_duration(&mut self, duration: u8) -> Result<(), I::Error> {
let d = duration.clamp(0, 63);
if d & 0b10_0000 > 0 {
self.reg_set_bits(Register::WAKE_UP_DUR, FF_DUR5).await?;
} else {
self.reg_reset_bits(Register::WAKE_UP_DUR, FF_DUR5).await?;
}
self.modify_reg(Register::FREE_FALL, |v| {
v & !FF_DUR_MASK | d << FF_DUR_SHIFT
})
.await
}
/// Set the free-fall threshold
///
/// Free-fall threshold @ FS = ±2 g
pub async fn set_free_fall_threshold(
&mut self,
threshold: FreeFallThreshold,
) -> Result<(), I::Error> {
self.modify_reg(Register::FREE_FALL, |v| {
v & !FF_THS_MASK | (threshold as u8) << FF_THS_SHIFT
})
.await
}
/// Get the wake-up source
pub async fn get_wake_up_source(&mut self) -> Result<WakeUpSource, I::Error> {
let source = self.read_reg(Register::WAKE_UP_SRC).await?;
Ok(WakeUpSource::from(source))
}
/// Get the tap source
pub async fn get_tap_source(&mut self) -> Result<TapSource, I::Error> {
let source = self.read_reg(Register::TAP_SRC).await?;
Ok(TapSource::from(source))
}
/// Get the 6D source
pub async fn get_6d_source(&mut self) -> Result<SixDSource, I::Error> {
let source = self.read_reg(Register::SIXD_SRC).await?;
Ok(SixDSource::from(source))
}
/// Get all interrupt sources
///
/// # NOTE
///
/// Reading this register clears all interrupt function flags routed to the INT pads simultaneously!
pub async fn get_all_interrupt_sources(&mut self) -> Result<AllInterruptSources, I::Error> {
let source = self.read_reg(Register::ALL_INT_SRC).await?;
Ok(AllInterruptSources::from(source))
}
/// Set the X axis user offset value
///
/// # ARGUMENTS
///
/// - `offset`: Two's complement user offset value on X-axis data, used for wake-up function
pub async fn set_x_offset(&mut self, offset: i8) -> Result<(), I::Error> {
self.write_reg(Register::X_OFS_USR, offset as u8).await
}
/// Set the Y axis user offset value
///
/// # ARGUMENTS
///
/// - `offset`: Two's complement user offset value on Y-axis data, used for wake-up function
pub async fn set_y_offset(&mut self, offset: i8) -> Result<(), I::Error> {
self.write_reg(Register::Y_OFS_USR, offset as u8).await
}
/// Set the Z axis user offset value
///
/// # ARGUMENTS
///
/// - `offset`: Two's complement user offset value on Z-axis data, used for wake-up function
pub async fn set_z_offset(&mut self, offset: i8) -> Result<(), I::Error> {
self.write_reg(Register::Z_OFS_USR, offset as u8).await
}
/// Switch between latched and pulsed mode for data ready interrupt
///
/// # ARGUMENTS
///
/// - `enable`: Enable pulsed interrupt mode (true: enabled - pulsed mode, false: disabled - latched mode)
///
/// Disabled by default
pub async fn set_pulsed_interrupt_mode(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, DRDY_PULSED).await
} else {
self.reg_reset_bits(Register::CTRL7, DRDY_PULSED).await
}
}
/// Route interrupts from INT2 pad to INT1
///
/// # ARGUMENTS
///
/// - `enabled`: Enable routing (true: enabled - All signals available only on INT2 are routed to INT1, false: disabled)
///
/// Disabled by default
pub async fn route_int2_to_int1(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, INT2_ON_INT1).await
} else {
self.reg_reset_bits(Register::CTRL7, INT2_ON_INT1).await
}
}
/// Enable/Disable interrupts
///
/// # ARGUMENTS
///
/// - `enable`: Enable interrupts (true: enabled, false: disabled)
///
/// Disabled by default
pub async fn enable_interrupts(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, INTERRUPTS_ENABLE).await
} else {
self.reg_reset_bits(Register::CTRL7, INTERRUPTS_ENABLE)
.await
}
}
/// Enable/Disable application of user offset values in accelerometer output data registers
///
/// # NOTE
///
/// `enable_filtered_data_selection` must be **DISABLED** (low-pass path selected)
///
/// # ARGUMENTS
///
/// - `enable`: Enable user offset values (true: enabled, false: disabled)
///
/// Disabled by default
pub async fn enable_user_offset_on_output(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, USR_OFF_ON_OUT).await
} else {
self.reg_reset_bits(Register::CTRL7, USR_OFF_ON_OUT).await
}
}
/// Enable/Disable application of user offset values to wake-up function only
///
/// # ARGUMENTS
///
/// - `enable`: Enable user offset values (true: enabled, false: disabled)
///
/// Disabled by default
pub async fn enable_user_offset_on_wake_up(&mut self, enable: bool) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, USR_OFF_ON_WU).await
} else {
self.reg_reset_bits(Register::CTRL7, USR_OFF_ON_WU).await
}
}
/// Set the weight of the user offset values
///
/// # ARGUMENTS
///
/// - `high_weight`: true: 15.6 mg/LSB, false: 977 µg/LSB
///
/// Default value is 977 µg/LSB (false)
pub async fn set_user_offset_weight(&mut self, high_weight: bool) -> Result<(), I::Error> {
if high_weight {
self.reg_set_bits(Register::CTRL7, USR_OFF_W).await
} else {
self.reg_reset_bits(Register::CTRL7, USR_OFF_W).await
}
}
/// Enable/Disable high-pass filter reference mode
///
/// # ARGUMENTS
///
/// - `enable`: Enable high-pass filter reference mode (true: enabled, false: disabled)
///
/// Disabled by default
pub async fn enable_high_pass_filter_reference_mode(
&mut self,
enable: bool,
) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, HP_REF_MODE).await
} else {
self.reg_reset_bits(Register::CTRL7, HP_REF_MODE).await
}
}
/// Enable/Disable low-pass filter for 6D interrupt function
///
/// # ARGUMENTS
///
/// - `enable`: Enable low-pass filter
///
/// true: LPF2 output data sent to 6D interrupt function
///
/// false: OD2/2 low-pass filtered data sent to 6D interrupt function
///
/// Disabled by default
pub async fn enable_low_pass_filter_6d_interrupt(
&mut self,
enable: bool,
) -> Result<(), I::Error> {
if enable {
self.reg_set_bits(Register::CTRL7, LPASS_ON6D).await
} else {
self.reg_reset_bits(Register::CTRL7, LPASS_ON6D).await
}
}
#[inline]
async fn read_reg(&mut self, reg: Register) -> Result<u8, I::Error> {
let mut data = [0];
self.interface.write_read(&[reg.addr()], &mut data).await?;
Ok(data[0])
}
#[inline]
async fn read_regs(&mut self, reg: Register, buffer: &mut [u8]) -> Result<(), I::Error> {
pub const MULTI_READ_FLAG: u8 = 0b1000_0000;
self.interface
.write_read(&[reg.addr() | MULTI_READ_FLAG], buffer)
.await
}
#[inline]
async fn write_reg(&mut self, reg: Register, data: u8) -> Result<(), I::Error> {
self.interface.write(&[reg.addr(), data]).await
}
#[inline]
async fn modify_reg<F: FnOnce(u8) -> u8>(
&mut self,
reg: Register,
f: F,
) -> Result<(), I::Error> {
let r = self.read_reg(reg).await?;
self.write_reg(reg, f(r)).await
}
#[inline]
async fn reg_set_bits(&mut self, reg: Register, mask: u8) -> Result<(), I::Error> {
self.modify_reg(reg, |r| r | mask).await
}
#[inline]
async fn reg_reset_bits(&mut self, reg: Register, mask: u8) -> Result<(), I::Error> {
self.modify_reg(reg, |r| r & !mask).await
}
}