1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
use crate::constants::*;
use crate::types::*;
use byteorder::{ByteOrder, ReadBytesExt};
use std::io;
use std::io::Read;
use std::num::NonZeroU64;
/// `perf_event_header`
#[derive(Debug, Clone, Copy)]
pub struct PerfEventHeader {
pub type_: u32,
pub misc: u16,
pub size: u16,
}
impl PerfEventHeader {
pub const STRUCT_SIZE: usize = 4 + 2 + 2;
pub fn parse<R: Read, T: ByteOrder>(mut reader: R) -> Result<Self, std::io::Error> {
let type_ = reader.read_u32::<T>()?;
let misc = reader.read_u16::<T>()?;
let size = reader.read_u16::<T>()?;
Ok(Self { type_, misc, size })
}
}
/// `perf_event_attr`
#[derive(Debug, Clone, Copy)]
pub struct PerfEventAttr {
/// The type of the perf event.
pub type_: PerfEventType,
/// The sampling policy.
pub sampling_policy: SamplingPolicy,
/// Specifies values included in sample. (original name `sample_type`)
pub sample_format: SampleFormat,
/// Specifies the structure values returned by read() on a perf event fd,
/// see [`ReadFormat`].
pub read_format: ReadFormat,
/// Bitset of flags.
pub flags: AttrFlags,
/// The wake-up policy.
pub wakeup_policy: WakeupPolicy,
/// Branch-sample specific flags.
pub branch_sample_format: BranchSampleFormat,
/// Defines set of user regs to dump on samples.
/// See asm/perf_regs.h for details.
pub sample_regs_user: u64,
/// Defines size of the user stack to dump on samples.
pub sample_stack_user: u32,
/// The clock ID.
pub clock: PerfClock,
/// Defines set of regs to dump for each sample
/// state captured on:
/// - precise = 0: PMU interrupt
/// - precise > 0: sampled instruction
///
/// See asm/perf_regs.h for details.
pub sample_regs_intr: u64,
/// Wakeup watermark for AUX area
pub aux_watermark: u32,
/// When collecting stacks, this is the maximum number of stack frames
/// (user + kernel) to collect.
pub sample_max_stack: u16,
/// When sampling AUX events, this is the size of the AUX sample.
pub aux_sample_size: u32,
/// User provided data if sigtrap=1, passed back to user via
/// siginfo_t::si_perf_data, e.g. to permit user to identify the event.
/// Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
/// truncated accordingly on 32 bit architectures.
pub sig_data: u64,
}
impl PerfEventAttr {
pub fn parse<R: Read, T: ByteOrder>(
mut reader: R,
size: Option<u32>,
) -> Result<Self, std::io::Error> {
let type_ = reader.read_u32::<T>()?;
let self_described_size = reader.read_u32::<T>()?;
let config = reader.read_u64::<T>()?;
let size = size.unwrap_or(self_described_size);
if size < PERF_ATTR_SIZE_VER0 {
return Err(io::ErrorKind::InvalidInput.into());
}
let sampling_period_or_frequency = reader.read_u64::<T>()?;
let sample_type = reader.read_u64::<T>()?;
let read_format = reader.read_u64::<T>()?;
let flags = reader.read_u64::<T>()?;
let wakeup_events_or_watermark = reader.read_u32::<T>()?;
let bp_type = reader.read_u32::<T>()?;
let bp_addr_or_kprobe_func_or_uprobe_func_or_config1 = reader.read_u64::<T>()?;
let bp_len_or_kprobe_addr_or_probe_offset_or_config2 = if size >= PERF_ATTR_SIZE_VER1 {
reader.read_u64::<T>()?
} else {
0
};
let branch_sample_type = if size >= PERF_ATTR_SIZE_VER2 {
reader.read_u64::<T>()?
} else {
0
};
let (sample_regs_user, sample_stack_user, clockid) = if size >= PERF_ATTR_SIZE_VER3 {
let sample_regs_user = reader.read_u64::<T>()?;
let sample_stack_user = reader.read_u32::<T>()?;
let clockid = reader.read_u32::<T>()?;
(sample_regs_user, sample_stack_user, clockid)
} else {
(0, 0, 0)
};
let sample_regs_intr = if size >= PERF_ATTR_SIZE_VER4 {
reader.read_u64::<T>()?
} else {
0
};
let (aux_watermark, sample_max_stack) = if size >= PERF_ATTR_SIZE_VER5 {
let aux_watermark = reader.read_u32::<T>()?;
let sample_max_stack = reader.read_u16::<T>()?;
let __reserved_2 = reader.read_u16::<T>()?;
(aux_watermark, sample_max_stack)
} else {
(0, 0)
};
let aux_sample_size = if size >= PERF_ATTR_SIZE_VER6 {
let aux_sample_size = reader.read_u32::<T>()?;
let __reserved_3 = reader.read_u32::<T>()?;
aux_sample_size
} else {
0
};
let sig_data = if size >= PERF_ATTR_SIZE_VER7 {
reader.read_u64::<T>()?
} else {
0
};
// Consume any remaining bytes.
if size > PERF_ATTR_SIZE_VER7 {
let remaining = size - PERF_ATTR_SIZE_VER7;
io::copy(&mut reader.by_ref().take(remaining.into()), &mut io::sink())?;
}
let flags = AttrFlags::from_bits_truncate(flags);
let type_ = PerfEventType::parse(
type_,
bp_type,
config,
bp_addr_or_kprobe_func_or_uprobe_func_or_config1,
bp_len_or_kprobe_addr_or_probe_offset_or_config2,
)
.ok_or(io::ErrorKind::InvalidInput)?;
// If AttrFlags::FREQ is set in `flags`, this is the sample frequency,
// otherwise it is the sample period.
//
// ```c
// union {
// /// Period of sampling
// __u64 sample_period;
// /// Frequency of sampling
// __u64 sample_freq;
// };
// ```
let sampling_policy = if flags.contains(AttrFlags::FREQ) {
SamplingPolicy::Frequency(sampling_period_or_frequency)
} else if let Some(period) = NonZeroU64::new(sampling_period_or_frequency) {
SamplingPolicy::Period(period)
} else {
SamplingPolicy::NoSampling
};
let wakeup_policy = if flags.contains(AttrFlags::WATERMARK) {
WakeupPolicy::Watermark(wakeup_events_or_watermark)
} else {
WakeupPolicy::EventCount(wakeup_events_or_watermark)
};
let clock = if flags.contains(AttrFlags::USE_CLOCKID) {
let clockid = ClockId::from_u32(clockid).ok_or(io::ErrorKind::InvalidInput)?;
PerfClock::ClockId(clockid)
} else {
PerfClock::Default
};
Ok(Self {
type_,
sampling_policy,
sample_format: SampleFormat::from_bits_truncate(sample_type),
read_format: ReadFormat::from_bits_truncate(read_format),
flags,
wakeup_policy,
branch_sample_format: BranchSampleFormat::from_bits_truncate(branch_sample_type),
sample_regs_user,
sample_stack_user,
clock,
sample_regs_intr,
aux_watermark,
sample_max_stack,
aux_sample_size,
sig_data,
})
}
}
/// The type of perf event
#[derive(Debug, Clone, Copy)]
pub enum PerfEventType {
/// A hardware perf event. (`PERF_TYPE_HARDWARE`)
Hardware(HardwareEventId, PmuTypeId),
/// A software perf event. (`PERF_TYPE_SOFTWARE`)
///
/// Special "software" events provided by the kernel, even if the hardware
/// does not support performance events. These events measure various
/// physical and sw events of the kernel (and allow the profiling of them as
/// well).
Software(SoftwareCounterType),
/// A tracepoint perf event. (`PERF_TYPE_TRACEPOINT`)
Tracepoint(u64),
/// A hardware cache perf event. (`PERF_TYPE_HW_CACHE`)
///
/// Selects a certain combination of CacheId, CacheOp, CacheOpResult, PMU type ID.
///
/// ```plain
/// { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
/// { read, write, prefetch } x
/// { accesses, misses }
/// ```
HwCache(
HardwareCacheId,
HardwareCacheOp,
HardwareCacheOpResult,
PmuTypeId,
),
/// A hardware breakpoint perf event. (`PERF_TYPE_BREAKPOINT`)
///
/// Breakpoints can be read/write accesses to an address as well as
/// execution of an instruction address.
Breakpoint(HwBreakpointType, HwBreakpointAddr, HwBreakpointLen),
/// Dynamic PMU
///
/// `(pmu, config, config1, config2)`
///
/// Acceptable values for each of `config`, `config1` and `config2`
/// parameters are defined by corresponding entries in
/// `/sys/bus/event_source/devices/<pmu>/format/*`.
///
/// From the `perf_event_open` man page:
/// > Since Linux 2.6.38, perf_event_open() can support multiple PMUs. To
/// > enable this, a value exported by the kernel can be used in the type
/// > field to indicate which PMU to use. The value to use can be found in
/// > the sysfs filesystem: there is a subdirectory per PMU instance under
/// > /sys/bus/event_source/devices. In each subdirectory there is a type
/// > file whose content is an integer that can be used in the type field.
/// > For instance, /sys/bus/event_source/devices/cpu/type contains the
/// > value for the core CPU PMU, which is usually 4.
///
/// (I don't fully understand this - the value 4 also means `PERF_TYPE_RAW`.
/// Maybe the type `Raw` is just one of those dynamic PMUs, usually "core"?)
///
/// Among the "dynamic PMU" values, there are two special values for
/// kprobes and uprobes:
///
/// > kprobe and uprobe (since Linux 4.17)
/// > These two dynamic PMUs create a kprobe/uprobe and attach it to the
/// > file descriptor generated by perf_event_open. The kprobe/uprobe will
/// > be destroyed on the destruction of the file descriptor. See fields
/// > kprobe_func, uprobe_path, kprobe_addr, and probe_offset for more details.
///
/// ```c
/// union {
/// __u64 kprobe_func; /* for perf_kprobe */
/// __u64 uprobe_path; /* for perf_uprobe */
/// __u64 config1; /* extension of config */
/// };
///
/// union {
/// __u64 kprobe_addr; /* when kprobe_func == NULL */
/// __u64 probe_offset; /* for perf_[k,u]probe */
/// __u64 config2; /* extension of config1 */
/// };
/// ```
DynamicPmu(u32, u64, u64, u64),
}
/// PMU type ID
///
/// The PMU type ID allows selecting whether to observe only "atom", only "core",
/// or both. If the PMU type ID is zero, both "atom" and "core" are observed.
/// To observe just one of them, the PMU type ID needs to be set to the value of
/// `/sys/devices/cpu_atom/type` or of `/sys/devices/cpu_core/type`.
#[derive(Debug, Clone, Copy)]
pub struct PmuTypeId(pub u32);
/// The address of the breakpoint.
///
/// For execution breakpoints, this is the memory address of the instruction
/// of interest; for read and write breakpoints, it is the memory address of
/// the memory location of interest.
#[derive(Debug, Clone, Copy)]
pub struct HwBreakpointAddr(pub u64);
/// The length of the breakpoint being measured.
///
/// Options are `HW_BREAKPOINT_LEN_1`, `HW_BREAKPOINT_LEN_2`,
/// `HW_BREAKPOINT_LEN_4`, and `HW_BREAKPOINT_LEN_8`. For an
/// execution breakpoint, set this to sizeof(long).
#[derive(Debug, Clone, Copy)]
pub struct HwBreakpointLen(pub u64);
impl PerfEventType {
pub fn parse(
type_: u32,
bp_type: u32,
config: u64,
config1: u64,
config2: u64,
) -> Option<Self> {
let t = match type_ {
PERF_TYPE_HARDWARE => {
// Config format: 0xEEEEEEEE000000AA
//
// - AA: hardware event ID
// - EEEEEEEE: PMU type ID
let hardware_event_id = (config & 0xff) as u8;
let pmu_type = PmuTypeId((config >> 32) as u32);
Self::Hardware(HardwareEventId::parse(hardware_event_id)?, pmu_type)
}
PERF_TYPE_SOFTWARE => Self::Software(SoftwareCounterType::parse(config)?),
PERF_TYPE_TRACEPOINT => Self::Tracepoint(config),
PERF_TYPE_HW_CACHE => {
// Config format: 0xEEEEEEEE00DDCCBB
//
// - BB: hardware cache ID
// - CC: hardware cache op ID
// - DD: hardware cache op result ID
// - EEEEEEEE: PMU type ID
let cache_id = config as u8;
let cache_op_id = (config >> 8) as u8;
let cache_op_result = (config >> 16) as u8;
let pmu_type = PmuTypeId((config >> 32) as u32);
Self::HwCache(
HardwareCacheId::parse(cache_id)?,
HardwareCacheOp::parse(cache_op_id)?,
HardwareCacheOpResult::parse(cache_op_result)?,
pmu_type,
)
}
PERF_TYPE_BREAKPOINT => {
let bp_type = HwBreakpointType::from_bits_truncate(bp_type);
Self::Breakpoint(bp_type, HwBreakpointAddr(config1), HwBreakpointLen(config2))
}
_ => Self::DynamicPmu(type_, config, config1, config2),
// PERF_TYPE_RAW is handled as part of DynamicPmu.
};
Some(t)
}
}
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum HardwareEventId {
/// `PERF_COUNT_HW_CPU_CYCLES`
CpuCycles,
/// `PERF_COUNT_HW_INSTRUCTIONS`
Instructions,
/// `PERF_COUNT_HW_CACHE_REFERENCES`
CacheReferences,
/// `PERF_COUNT_HW_CACHE_MISSES`
CacheMisses,
/// `PERF_COUNT_HW_BRANCH_INSTRUCTIONS`
BranchInstructions,
/// `PERF_COUNT_HW_BRANCH_MISSES`
BranchMisses,
/// `PERF_COUNT_HW_BUS_CYCLES`
BusCycles,
/// `PERF_COUNT_HW_STALLED_CYCLES_FRONTEND`
StalledCyclesFrontend,
/// `PERF_COUNT_HW_STALLED_CYCLES_BACKEND`
StalledCyclesBackend,
/// `PERF_COUNT_HW_REF_CPU_CYCLES`
RefCpuCycles,
}
impl HardwareEventId {
pub fn parse(hardware_event_id: u8) -> Option<Self> {
let t = match hardware_event_id {
PERF_COUNT_HW_CPU_CYCLES => Self::CpuCycles,
PERF_COUNT_HW_INSTRUCTIONS => Self::Instructions,
PERF_COUNT_HW_CACHE_REFERENCES => Self::CacheReferences,
PERF_COUNT_HW_CACHE_MISSES => Self::CacheMisses,
PERF_COUNT_HW_BRANCH_INSTRUCTIONS => Self::BranchInstructions,
PERF_COUNT_HW_BRANCH_MISSES => Self::BranchMisses,
PERF_COUNT_HW_BUS_CYCLES => Self::BusCycles,
PERF_COUNT_HW_STALLED_CYCLES_FRONTEND => Self::StalledCyclesFrontend,
PERF_COUNT_HW_STALLED_CYCLES_BACKEND => Self::StalledCyclesBackend,
PERF_COUNT_HW_REF_CPU_CYCLES => Self::RefCpuCycles,
_ => return None,
};
Some(t)
}
}
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum SoftwareCounterType {
/// `PERF_COUNT_SW_CPU_CLOCK`
CpuClock,
/// `PERF_COUNT_SW_TASK_CLOCK`
TaskClock,
/// `PERF_COUNT_SW_PAGE_FAULTS`
PageFaults,
/// `PERF_COUNT_SW_CONTEXT_SWITCHES`
ContextSwitches,
/// `PERF_COUNT_SW_CPU_MIGRATIONS`
CpuMigrations,
/// `PERF_COUNT_SW_PAGE_FAULTS_MIN`
PageFaultsMin,
/// `PERF_COUNT_SW_PAGE_FAULTS_MAJ`
PageFaultsMaj,
/// `PERF_COUNT_SW_ALIGNMENT_FAULTS`
AlignmentFaults,
/// `PERF_COUNT_SW_EMULATION_FAULTS`
EmulationFaults,
/// `PERF_COUNT_SW_DUMMY`
Dummy,
/// `PERF_COUNT_SW_BPF_OUTPUT`
BpfOutput,
/// `PERF_COUNT_SW_CGROUP_SWITCHES`
CgroupSwitches,
}
impl SoftwareCounterType {
pub fn parse(config: u64) -> Option<Self> {
let t = match config {
PERF_COUNT_SW_CPU_CLOCK => Self::CpuClock,
PERF_COUNT_SW_TASK_CLOCK => Self::TaskClock,
PERF_COUNT_SW_PAGE_FAULTS => Self::PageFaults,
PERF_COUNT_SW_CONTEXT_SWITCHES => Self::ContextSwitches,
PERF_COUNT_SW_CPU_MIGRATIONS => Self::CpuMigrations,
PERF_COUNT_SW_PAGE_FAULTS_MIN => Self::PageFaultsMin,
PERF_COUNT_SW_PAGE_FAULTS_MAJ => Self::PageFaultsMaj,
PERF_COUNT_SW_ALIGNMENT_FAULTS => Self::AlignmentFaults,
PERF_COUNT_SW_EMULATION_FAULTS => Self::EmulationFaults,
PERF_COUNT_SW_DUMMY => Self::Dummy,
PERF_COUNT_SW_BPF_OUTPUT => Self::BpfOutput,
PERF_COUNT_SW_CGROUP_SWITCHES => Self::CgroupSwitches,
_ => return None,
};
Some(t)
}
}
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum HardwareCacheId {
/// `PERF_COUNT_HW_CACHE_L1D`
L1d,
/// `PERF_COUNT_HW_CACHE_L1I`
L1i,
/// `PERF_COUNT_HW_CACHE_LL`
Ll,
/// `PERF_COUNT_HW_CACHE_DTLB`
Dtlb,
/// `PERF_COUNT_HW_CACHE_ITLB`
Itlb,
/// `PERF_COUNT_HW_CACHE_BPU`
Bpu,
/// `PERF_COUNT_HW_CACHE_NODE`
Node,
}
impl HardwareCacheId {
pub fn parse(cache_id: u8) -> Option<Self> {
let rv = match cache_id {
PERF_COUNT_HW_CACHE_L1D => Self::L1d,
PERF_COUNT_HW_CACHE_L1I => Self::L1i,
PERF_COUNT_HW_CACHE_LL => Self::Ll,
PERF_COUNT_HW_CACHE_DTLB => Self::Dtlb,
PERF_COUNT_HW_CACHE_ITLB => Self::Itlb,
PERF_COUNT_HW_CACHE_BPU => Self::Bpu,
PERF_COUNT_HW_CACHE_NODE => Self::Node,
_ => return None,
};
Some(rv)
}
}
#[derive(Debug, Clone, Copy)]
pub enum HardwareCacheOp {
/// `PERF_COUNT_HW_CACHE_OP_READ`
Read,
/// `PERF_COUNT_HW_CACHE_OP_WRITE`
Write,
/// `PERF_COUNT_HW_CACHE_OP_PREFETCH`
Prefetch,
}
impl HardwareCacheOp {
pub fn parse(cache_op: u8) -> Option<Self> {
match cache_op {
PERF_COUNT_HW_CACHE_OP_READ => Some(Self::Read),
PERF_COUNT_HW_CACHE_OP_WRITE => Some(Self::Write),
PERF_COUNT_HW_CACHE_OP_PREFETCH => Some(Self::Prefetch),
_ => None,
}
}
}
#[derive(Debug, Clone, Copy)]
pub enum HardwareCacheOpResult {
/// `PERF_COUNT_HW_CACHE_RESULT_ACCESS`
Access,
/// `PERF_COUNT_HW_CACHE_RESULT_MISS`
Miss,
}
impl HardwareCacheOpResult {
pub fn parse(cache_op_result: u8) -> Option<Self> {
match cache_op_result {
PERF_COUNT_HW_CACHE_RESULT_ACCESS => Some(Self::Access),
PERF_COUNT_HW_CACHE_RESULT_MISS => Some(Self::Miss),
_ => None,
}
}
}
/// Sampling Policy
///
/// > Events can be set to notify when a threshold is crossed,
/// > indicating an overflow. [...]
/// >
/// > Overflows are generated only by sampling events (sample_period
/// > must have a nonzero value).
#[derive(Debug, Clone, Copy)]
pub enum SamplingPolicy {
/// `NoSampling` means that the event is a count and not a sampling event.
NoSampling,
/// Sets a fixed sampling period for a sampling event, in the unit of the
/// observed count / event.
///
/// A "sampling" event is one that generates an overflow notification every
/// N events, where N is given by the sampling period. A sampling event has
/// a sampling period greater than zero.
///
/// When an overflow occurs, requested data is recorded in the mmap buffer.
/// The `SampleFormat` bitfield controls what data is recorded on each overflow.
Period(NonZeroU64),
/// Sets a frequency for a sampling event, in "samples per (wall-clock) second".
///
/// This uses a dynamic period which is adjusted by the kernel to hit the
/// desired frequency. The rate of adjustment is a timer tick.
///
/// If `SampleFormat::PERIOD` is requested, the current period at the time of
/// the sample is stored in the sample.
Frequency(u64),
}
/// Wakeup policy for "overflow notifications". This controls the point at
/// which the `read` call completes. (TODO: double check this)
///
/// > There are two ways to generate overflow notifications.
/// >
/// > The first is to set a `WakeupPolicy`
/// > that will trigger if a certain number of samples or bytes have
/// > been written to the mmap ring buffer.
/// >
/// > The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl.
/// > This ioctl adds to a counter that decrements each time the event
/// > overflows. When nonzero, POLLIN is indicated, but once the
/// > counter reaches 0 POLLHUP is indicated and the underlying event
/// > is disabled.
#[derive(Debug, Clone, Copy)]
pub enum WakeupPolicy {
/// Wake up every time N records of type `RecordType::SAMPLE` have been
/// written to the mmap ring buffer.
EventCount(u32),
/// Wake up after N bytes of any record type have been written to the mmap
/// ring buffer.
///
/// To receive a wakeup after every single record, choose `Watermark(1)`.
/// `Watermark(0)` is treated the same as `Watermark(1)`.
Watermark(u32),
}
/// This allows selecting which internal Linux clock to use when generating
/// timestamps.
///
/// Setting a specific ClockId can make it easier to correlate perf sample
/// times with timestamps generated by other tools. For example, when sampling
/// applications which emit JITDUMP information, you'll usually select the
/// moonotonic clock. This makes it possible to correctly order perf event
/// records and JITDUMP records - those also usually use the monotonic clock.
#[derive(Debug, Clone, Copy)]
pub enum PerfClock {
/// The default clock. If this is used, the timestamps in event records
/// are obtained with `local_clock()` which is a hardware timestamp if
/// available and the jiffies value if not.
///
/// In practice, on x86_64 this seems to use ktime_get_ns() which is the
/// number of nanoseconds since boot.
Default,
/// A specific clock.
ClockId(ClockId),
}