1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
// Copyright © 2020, Oracle and/or its affiliates.
// Copyright (c) 2019 Intel Corporation. All rights reserved.
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause

//! Traits and structs for loading elf image kernels into guest memory.

#![cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]

use std::fmt;
use std::io::{Read, Seek, SeekFrom};
use std::mem;
use std::result;

use vm_memory::{Address, ByteValued, Bytes, GuestAddress, GuestMemory, GuestUsize};

use crate::loader::{Error as KernelLoaderError, KernelLoader, KernelLoaderResult, Result};
use crate::loader_gen::elf;
pub use crate::loader_gen::start_info;

unsafe impl ByteValued for elf::Elf64_Ehdr {}
unsafe impl ByteValued for elf::Elf64_Nhdr {}
unsafe impl ByteValued for elf::Elf64_Phdr {}

#[derive(Debug, PartialEq)]
/// Elf kernel loader errors.
pub enum Error {
    /// Invalid alignment.
    Align,
    /// Loaded big endian binary on a little endian platform.
    BigEndianElfOnLittle,
    /// Invalid ELF magic number.
    InvalidElfMagicNumber,
    /// Invalid program header size.
    InvalidProgramHeaderSize,
    /// Invalid program header offset.
    InvalidProgramHeaderOffset,
    /// Invalid program header address.
    InvalidProgramHeaderAddress,
    /// Invalid entry address.
    InvalidEntryAddress,
    /// Overflow occurred during an arithmetic operation.
    Overflow,
    /// Unable to read ELF header.
    ReadElfHeader,
    /// Unable to read kernel image.
    ReadKernelImage,
    /// Unable to read program header.
    ReadProgramHeader,
    /// Unable to seek to kernel start.
    SeekKernelStart,
    /// Unable to seek to ELF start.
    SeekElfStart,
    /// Unable to seek to program header.
    SeekProgramHeader,
    /// Unable to seek to note header.
    SeekNoteHeader,
    /// Unable to read note header.
    ReadNoteHeader,
    /// Invalid PVH note.
    InvalidPvhNote,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let desc = match self {
            Error::Align => "Invalid alignment",
            Error::BigEndianElfOnLittle => {
                "Trying to load big-endian binary on little-endian machine"
            }
            Error::InvalidElfMagicNumber => "Invalid Elf magic number",
            Error::InvalidProgramHeaderSize => "Invalid program header size",
            Error::InvalidProgramHeaderOffset => "Invalid program header offset",
            Error::InvalidProgramHeaderAddress => "Invalid Program Header Address",
            Error::InvalidEntryAddress => "Invalid entry address",
            Error::Overflow => "Overflow occurred during an arithmetic operation",
            Error::ReadElfHeader => "Unable to read elf header",
            Error::ReadKernelImage => "Unable to read kernel image",
            Error::ReadProgramHeader => "Unable to read program header",
            Error::SeekKernelStart => "Unable to seek to kernel start",
            Error::SeekElfStart => "Unable to seek to elf start",
            Error::SeekProgramHeader => "Unable to seek to program header",
            Error::SeekNoteHeader => "Unable to seek to note header",
            Error::ReadNoteHeader => "Unable to read note header",
            Error::InvalidPvhNote => "Invalid PVH note header",
        };

        write!(f, "Kernel Loader: {}", desc)
    }
}

impl std::error::Error for Error {}

#[derive(Clone, Copy, Debug, PartialEq)]
/// Availability of PVH entry point in the kernel, which allows the VMM
/// to use the PVH boot protocol to start guests.
pub enum PvhBootCapability {
    /// PVH entry point is present
    PvhEntryPresent(GuestAddress),
    /// PVH entry point is not present
    PvhEntryNotPresent,
    /// PVH entry point is ignored, even if available
    PvhEntryIgnored,
}

impl Default for PvhBootCapability {
    fn default() -> Self {
        PvhBootCapability::PvhEntryIgnored
    }
}

impl fmt::Display for PvhBootCapability {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::PvhBootCapability::*;
        match self {
            PvhEntryPresent(pvh_entry_addr) => write!(
                f,
                "PVH entry point present at guest address: {:#x}",
                pvh_entry_addr.raw_value()
            ),
            PvhEntryNotPresent => write!(f, "PVH entry point not present"),
            PvhEntryIgnored => write!(f, "PVH entry point ignored"),
        }
    }
}

/// Raw ELF (a.k.a. vmlinux) kernel image support.
pub struct Elf;

impl Elf {
    /// Verifies that magic numbers are present in the Elf header.
    fn validate_header(ehdr: &elf::Elf64_Ehdr) -> std::result::Result<(), Error> {
        // Sanity checks
        if ehdr.e_ident[elf::EI_MAG0 as usize] != elf::ELFMAG0 as u8
            || ehdr.e_ident[elf::EI_MAG1 as usize] != elf::ELFMAG1
            || ehdr.e_ident[elf::EI_MAG2 as usize] != elf::ELFMAG2
            || ehdr.e_ident[elf::EI_MAG3 as usize] != elf::ELFMAG3
        {
            return Err(Error::InvalidElfMagicNumber);
        }
        if ehdr.e_ident[elf::EI_DATA as usize] != elf::ELFDATA2LSB as u8 {
            return Err(Error::BigEndianElfOnLittle);
        }
        if ehdr.e_phentsize as usize != mem::size_of::<elf::Elf64_Phdr>() {
            return Err(Error::InvalidProgramHeaderSize);
        }
        if (ehdr.e_phoff as usize) < mem::size_of::<elf::Elf64_Ehdr>() {
            return Err(Error::InvalidProgramHeaderOffset);
        }
        Ok(())
    }
}

impl KernelLoader for Elf {
    /// Loads a kernel from a vmlinux elf image into guest memory.
    ///
    /// By default, the kernel is loaded into guest memory at offset `phdr.p_paddr` specified
    /// by the elf image. When used, `kernel_offset` specifies a fixed offset from `phdr.p_paddr`
    /// at which to load the kernel. If `kernel_offset` is requested, the `pvh_entry_addr` field
    /// of the result will not be populated.
    ///
    /// # Arguments
    ///
    /// * `guest_mem`: [`GuestMemory`] to load the kernel in.
    /// * `kernel_offset`: Offset to be added to default kernel load address in guest memory.
    /// * `kernel_image` - Input vmlinux image.
    /// * `highmem_start_address`: Address where high memory starts.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate vm_memory;
    /// # use std::io::Cursor;
    /// # use linux_loader::loader::*;
    /// # use vm_memory::{Address, GuestAddress};
    /// # type GuestMemoryMmap = vm_memory::GuestMemoryMmap<()>;
    /// let mem_size: usize = 0x1000000;
    /// let himem_start = GuestAddress(0x0);
    /// let kernel_addr = GuestAddress(0x200000);
    /// let gm = GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), mem_size)]).unwrap();
    /// let mut kernel_image = vec![];
    /// kernel_image.extend_from_slice(include_bytes!("test_elf.bin"));
    /// elf::Elf::load(
    ///     &gm,
    ///     Some(kernel_addr),
    ///     &mut Cursor::new(&kernel_image),
    ///     Some(himem_start),
    /// ).unwrap();
    /// ```
    ///
    /// [`GuestMemory`]: https://docs.rs/vm-memory/latest/vm_memory/guest_memory/trait.GuestMemory.html
    fn load<F, M: GuestMemory>(
        guest_mem: &M,
        kernel_offset: Option<GuestAddress>,
        kernel_image: &mut F,
        highmem_start_address: Option<GuestAddress>,
    ) -> Result<KernelLoaderResult>
    where
        F: Read + Seek,
    {
        kernel_image
            .seek(SeekFrom::Start(0))
            .map_err(|_| Error::SeekElfStart)?;

        let mut ehdr = elf::Elf64_Ehdr::default();
        ehdr.as_bytes()
            .read_from(0, kernel_image, mem::size_of::<elf::Elf64_Ehdr>())
            .map_err(|_| Error::ReadElfHeader)?;

        // Sanity checks.
        Self::validate_header(&ehdr)?;
        if let Some(addr) = highmem_start_address {
            if (ehdr.e_entry as u64) < addr.raw_value() {
                return Err(Error::InvalidEntryAddress.into());
            }
        }

        let mut loader_result = KernelLoaderResult {
            kernel_load: match kernel_offset {
                Some(k_offset) => GuestAddress(
                    k_offset
                        .raw_value()
                        .checked_add(ehdr.e_entry as u64)
                        .ok_or(Error::Overflow)?,
                ),
                None => GuestAddress(ehdr.e_entry as u64),
            },
            ..Default::default()
        };

        kernel_image
            .seek(SeekFrom::Start(ehdr.e_phoff))
            .map_err(|_| Error::SeekProgramHeader)?;

        let phdr_sz = mem::size_of::<elf::Elf64_Phdr>();
        let mut phdrs: Vec<elf::Elf64_Phdr> = vec![];
        for _ in 0usize..ehdr.e_phnum as usize {
            let mut phdr = elf::Elf64_Phdr::default();
            phdr.as_bytes()
                .read_from(0, kernel_image, phdr_sz)
                .map_err(|_| Error::ReadProgramHeader)?;
            phdrs.push(phdr);
        }

        // Read in each section pointed to by the program headers.
        for phdr in phdrs {
            if phdr.p_type != elf::PT_LOAD || phdr.p_filesz == 0 {
                if phdr.p_type == elf::PT_NOTE {
                    // The PVH boot protocol currently requires that the kernel is loaded at
                    // the default kernel load address in guest memory (specified at kernel
                    // build time by the value of CONFIG_PHYSICAL_START). Therefore, only
                    // attempt to use PVH if an offset from the default load address has not
                    // been requested using the kernel_offset parameter.
                    if let Some(_offset) = kernel_offset {
                        loader_result.pvh_boot_cap = PvhBootCapability::PvhEntryIgnored;
                    } else {
                        // If kernel_offset is not requested, check if PVH entry point is present
                        loader_result.pvh_boot_cap = parse_elf_note(&phdr, kernel_image)?;
                    }
                }
                continue;
            }

            kernel_image
                .seek(SeekFrom::Start(phdr.p_offset))
                .map_err(|_| Error::SeekKernelStart)?;

            // if the vmm does not specify where the kernel should be loaded, just
            // load it to the physical address p_paddr for each segment.
            let mem_offset = match kernel_offset {
                Some(k_offset) => k_offset
                    .checked_add(phdr.p_paddr as u64)
                    .ok_or(Error::InvalidProgramHeaderAddress)?,
                None => GuestAddress(phdr.p_paddr as u64),
            };

            guest_mem
                .read_exact_from(mem_offset, kernel_image, phdr.p_filesz as usize)
                .map_err(|_| Error::ReadKernelImage)?;

            let kernel_end = mem_offset
                .raw_value()
                .checked_add(phdr.p_memsz as GuestUsize)
                .ok_or(KernelLoaderError::MemoryOverflow)?;
            loader_result.kernel_end = std::cmp::max(loader_result.kernel_end, kernel_end);
        }

        // elf image has no setup_header which is defined for bzImage
        loader_result.setup_header = None;

        Ok(loader_result)
    }
}

// Size of string "Xen", including the terminating NULL.
const PVH_NOTE_STR_SZ: usize = 4;

/// Examines a supplied elf program header of type `PT_NOTE` to determine if it contains an entry
/// of type `XEN_ELFNOTE_PHYS32_ENTRY` (0x12). Notes of this type encode a physical 32-bit entry
/// point address into the kernel, which is used when launching guests in 32-bit (protected) mode
/// with paging disabled, as described by the PVH boot protocol.
/// Returns the encoded entry point address, or `None` if no `XEN_ELFNOTE_PHYS32_ENTRY` entries
/// are found in the note header.
fn parse_elf_note<F>(phdr: &elf::Elf64_Phdr, kernel_image: &mut F) -> Result<PvhBootCapability>
where
    F: Read + Seek,
{
    // Type of note header that encodes a 32-bit entry point address to boot a guest kernel using
    // the PVH boot protocol.
    const XEN_ELFNOTE_PHYS32_ENTRY: u32 = 18;

    // Seek to the beginning of the note segment.
    kernel_image
        .seek(SeekFrom::Start(phdr.p_offset))
        .map_err(|_| Error::SeekNoteHeader)?;

    // Now that the segment has been found, we must locate an ELF note with the correct type that
    // encodes the PVH entry point if there is one.
    let mut nhdr: elf::Elf64_Nhdr = Default::default();
    let mut read_size: usize = 0;
    let nhdr_sz = mem::size_of::<elf::Elf64_Nhdr>();

    while read_size < phdr.p_filesz as usize {
        nhdr.as_bytes()
            .read_from(0, kernel_image, nhdr_sz)
            .map_err(|_| Error::ReadNoteHeader)?;

        // Check if the note header's name and type match the ones specified by the PVH ABI.
        if nhdr.n_type == XEN_ELFNOTE_PHYS32_ENTRY && nhdr.n_namesz as usize == PVH_NOTE_STR_SZ {
            let mut buf = [0u8; PVH_NOTE_STR_SZ];
            kernel_image
                .read_exact(&mut buf)
                .map_err(|_| Error::ReadNoteHeader)?;
            if buf == [b'X', b'e', b'n', b'\0'] {
                break;
            }
        }

        // Skip the note header plus the size of its fields (with alignment).
        let namesz_aligned = align_up(u64::from(nhdr.n_namesz), phdr.p_align)?;
        let descsz_aligned = align_up(u64::from(nhdr.n_descsz), phdr.p_align)?;

        // `namesz` and `descsz` are both `u32`s. We need to also verify for overflow, to be sure
        // we do not lose information.
        if namesz_aligned > u32::MAX.into() || descsz_aligned > u32::MAX.into() {
            return Err(Error::Overflow.into());
        }

        read_size = read_size
            .checked_add(nhdr_sz) // Skip the ELF_NOTE known sized fields.
            // Safe to truncate or change the type to `usize` (4 or 8 bytes depending on the
            // architecture 32/64 bits) since we validated that we do not lose information.
            .and_then(|read_size| read_size.checked_add(namesz_aligned as usize))
            .and_then(|read_size| read_size.checked_add(descsz_aligned as usize))
            .ok_or(Error::Overflow)?;

        kernel_image
            // The conversion here does not truncate, since `read_size` is of `usize` type, which
            // can be at maximum 8 bytes long.
            .seek(SeekFrom::Start(phdr.p_offset + read_size as u64))
            .map_err(|_| Error::SeekNoteHeader)?;
    }

    if read_size >= phdr.p_filesz as usize {
        // PVH ELF note not found, nothing else to do.
        return Ok(PvhBootCapability::PvhEntryNotPresent);
    }

    // Otherwise the correct note type was found.
    // The note header struct has already been read, so we can seek from the current position and
    // just skip the name field contents.
    kernel_image
        .seek(SeekFrom::Current(
            // Safe conversion since it is not losing data.
            align_up(u64::from(nhdr.n_namesz), phdr.p_align)? as i64 - PVH_NOTE_STR_SZ as i64,
        ))
        .map_err(|_| Error::SeekNoteHeader)?;

    // The PVH entry point is a 32-bit address, so the descriptor field must be capable of storing
    // all such addresses.
    if (nhdr.n_descsz as usize) < mem::size_of::<u32>() {
        return Err(Error::InvalidPvhNote.into());
    }

    let mut pvh_addr_bytes = [0; mem::size_of::<u32>()];

    // Read 32-bit address stored in the PVH note descriptor field.
    kernel_image
        .read_exact(&mut pvh_addr_bytes)
        .map_err(|_| Error::ReadNoteHeader)?;

    Ok(PvhBootCapability::PvhEntryPresent(GuestAddress(
        u32::from_le_bytes(pvh_addr_bytes).into(),
    )))
}

/// Align address upwards. Adapted from x86_64 crate:
/// https://docs.rs/x86_64/latest/x86_64/addr/fn.align_up.html
///
/// Returns the smallest x with alignment `align` so that x >= addr if the alignment is a power of
/// 2, or an error otherwise.
fn align_up(addr: u64, align: u64) -> result::Result<u64, Error> {
    if !align.is_power_of_two() {
        return Err(Error::Align);
    }
    let align_mask = align - 1;
    if addr & align_mask == 0 {
        Ok(addr) // already aligned
    } else {
        // Safe to unchecked add because this can be at maximum `2^64` - 1, which is not
        // overflowing.
        Ok((addr | align_mask) + 1)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::Cursor;
    use vm_memory::{Address, GuestAddress};
    type GuestMemoryMmap = vm_memory::GuestMemoryMmap<()>;

    const MEM_SIZE: u64 = 0x100_0000;

    fn create_guest_mem() -> GuestMemoryMmap {
        GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), (MEM_SIZE as usize))]).unwrap()
    }

    fn make_elf_bin() -> Vec<u8> {
        let mut v = Vec::new();
        v.extend_from_slice(include_bytes!("test_elf.bin"));
        v
    }

    fn make_elfnote() -> Vec<u8> {
        include_bytes!("test_elfnote.bin").to_vec()
    }

    fn make_dummy_elfnote() -> Vec<u8> {
        include_bytes!("test_dummy_note.bin").to_vec()
    }

    fn make_invalid_pvh_note() -> Vec<u8> {
        include_bytes!("test_invalid_pvh_note.bin").to_vec()
    }

    fn make_bad_align() -> Vec<u8> {
        include_bytes!("test_bad_align.bin").to_vec()
    }

    #[test]
    fn test_load_elf() {
        let gm = create_guest_mem();
        let image = make_elf_bin();
        let kernel_addr = GuestAddress(0x200000);
        let mut highmem_start_address = GuestAddress(0x0);
        let mut loader_result = Elf::load(
            &gm,
            Some(kernel_addr),
            &mut Cursor::new(&image),
            Some(highmem_start_address),
        )
        .unwrap();
        assert_eq!(loader_result.kernel_load.raw_value(), 0x200400);

        loader_result = Elf::load(&gm, Some(kernel_addr), &mut Cursor::new(&image), None).unwrap();
        assert_eq!(loader_result.kernel_load.raw_value(), 0x200400);

        loader_result = Elf::load(
            &gm,
            None,
            &mut Cursor::new(&image),
            Some(highmem_start_address),
        )
        .unwrap();
        assert_eq!(loader_result.kernel_load.raw_value(), 0x400);

        highmem_start_address = GuestAddress(0xa00000);
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::InvalidEntryAddress)),
            Elf::load(
                &gm,
                None,
                &mut Cursor::new(&image),
                Some(highmem_start_address)
            )
            .err()
        );
    }

    #[test]
    fn test_bad_magic_number() {
        let gm = create_guest_mem();
        let kernel_addr = GuestAddress(0x0);
        let mut bad_image = make_elf_bin();
        bad_image[0x1] = 0x33;
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::InvalidElfMagicNumber)),
            Elf::load(&gm, Some(kernel_addr), &mut Cursor::new(&bad_image), None).err()
        );
    }

    #[test]
    fn test_bad_endian() {
        // Only little endian is supported.
        let gm = create_guest_mem();
        let kernel_addr = GuestAddress(0x0);
        let mut bad_image = make_elf_bin();
        bad_image[0x5] = 2;
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::BigEndianElfOnLittle)),
            Elf::load(&gm, Some(kernel_addr), &mut Cursor::new(&bad_image), None).err()
        );
    }

    #[test]
    fn test_bad_phoff() {
        // Program header has to be past the end of the elf header.
        let gm = create_guest_mem();
        let kernel_addr = GuestAddress(0x0);
        let mut bad_image = make_elf_bin();
        bad_image[0x20] = 0x10;
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::InvalidProgramHeaderOffset)),
            Elf::load(&gm, Some(kernel_addr), &mut Cursor::new(&bad_image), None).err()
        );
    }

    #[test]
    fn test_load_pvh() {
        let gm = create_guest_mem();
        let pvhnote_image = make_elfnote();
        let loader_result = Elf::load(&gm, None, &mut Cursor::new(&pvhnote_image), None).unwrap();
        assert_eq!(
            loader_result.pvh_boot_cap,
            PvhBootCapability::PvhEntryPresent(GuestAddress(0x1e1fe1f))
        );

        // Verify that PVH is ignored when kernel_start is requested
        let loader_result = Elf::load(
            &gm,
            Some(GuestAddress(0x0020_0000)),
            &mut Cursor::new(&pvhnote_image),
            None,
        )
        .unwrap();
        assert_eq!(
            loader_result.pvh_boot_cap,
            PvhBootCapability::PvhEntryIgnored
        );
    }

    #[test]
    fn test_dummy_elfnote() {
        let gm = create_guest_mem();
        let dummynote_image = make_dummy_elfnote();
        let loader_result = Elf::load(&gm, None, &mut Cursor::new(&dummynote_image), None).unwrap();
        assert_eq!(
            loader_result.pvh_boot_cap,
            PvhBootCapability::PvhEntryNotPresent
        );
    }

    #[test]
    fn test_bad_elfnote() {
        let gm = create_guest_mem();
        let badnote_image = make_invalid_pvh_note();
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::InvalidPvhNote)),
            Elf::load(&gm, None, &mut Cursor::new(&badnote_image), None).err()
        );
    }

    #[test]
    fn test_bad_align() {
        let gm = GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), (0x1000_0000_usize))]).unwrap();
        let bad_align_image = make_bad_align();
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::Align)),
            Elf::load(&gm, None, &mut Cursor::new(&bad_align_image), None).err()
        );
    }

    #[test]
    fn test_overflow_loadaddr() {
        let gm = create_guest_mem();
        let image = make_elf_bin();
        assert_eq!(
            Some(KernelLoaderError::Elf(Error::Overflow)),
            Elf::load(
                &gm,
                Some(GuestAddress(u64::MAX)),
                &mut Cursor::new(&image),
                None
            )
            .err()
        );
    }
}