1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
// Copyright © 2020, Oracle and/or its affiliates.
//
// Copyright (c) 2019 Intel Corporation. All rights reserved.
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//! Traits and structs for loading kernels into guest memory.
//! - [KernelLoader](trait.KernelLoader.html): load kernel image into guest memory.
//! - [KernelLoaderResult](struct.KernelLoaderResult.html): structure passed to the VMM to assist
//! zero page construction and boot environment setup.
//! - [Elf](elf/struct.Elf.html): elf image loader.
//! - [BzImage](bzimage/struct.BzImage.html): bzImage loader.
//! - [PE](pe/struct.PE.html): PE image loader.
extern crate vm_memory;
use std::fmt;
use std::io::{Read, Seek};
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
use vm_memory::ByteValued;
use vm_memory::{Address, Bytes, GuestAddress, GuestMemory, GuestUsize, ReadVolatile};
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub use crate::loader_gen::bootparam;
pub use crate::cmdline::Cmdline;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86_64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub use x86_64::*;
#[cfg(target_arch = "aarch64")]
mod aarch64;
#[cfg(target_arch = "aarch64")]
pub use aarch64::*;
#[derive(Debug, PartialEq, Eq)]
/// Kernel loader errors.
pub enum Error {
/// Failed to load bzimage.
#[cfg(all(feature = "bzimage", any(target_arch = "x86", target_arch = "x86_64")))]
Bzimage(bzimage::Error),
/// Failed to load elf image.
#[cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]
Elf(elf::Error),
/// Failed to load PE image.
#[cfg(all(feature = "pe", target_arch = "aarch64"))]
Pe(pe::Error),
/// Invalid command line.
InvalidCommandLine,
/// Failed writing command line to guest memory.
CommandLineCopy,
/// Command line overflowed guest memory.
CommandLineOverflow,
/// Invalid kernel start address.
InvalidKernelStartAddress,
/// Memory to load kernel image is too small.
MemoryOverflow,
}
/// A specialized [`Result`] type for the kernel loader.
///
/// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html
pub type Result<T> = std::result::Result<T, Error>;
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let desc = match self {
#[cfg(all(feature = "bzimage", any(target_arch = "x86", target_arch = "x86_64")))]
Error::Bzimage(ref _e) => "failed to load bzImage kernel image",
#[cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]
Error::Elf(ref _e) => "failed to load ELF kernel image",
#[cfg(all(feature = "pe", target_arch = "aarch64"))]
Error::Pe(ref _e) => "failed to load PE kernel image",
Error::InvalidCommandLine => "invalid command line provided",
Error::CommandLineCopy => "failed writing command line to guest memory",
Error::CommandLineOverflow => "command line overflowed guest memory",
Error::InvalidKernelStartAddress => "invalid kernel start address",
Error::MemoryOverflow => "memory to load kernel image is not enough",
};
write!(f, "Kernel Loader: {}", desc)
}
}
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
#[cfg(all(feature = "bzimage", any(target_arch = "x86", target_arch = "x86_64")))]
Error::Bzimage(ref e) => Some(e),
#[cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]
Error::Elf(ref e) => Some(e),
#[cfg(all(feature = "pe", target_arch = "aarch64"))]
Error::Pe(ref e) => Some(e),
Error::InvalidCommandLine => None,
Error::CommandLineCopy => None,
Error::CommandLineOverflow => None,
Error::InvalidKernelStartAddress => None,
Error::MemoryOverflow => None,
}
}
}
#[cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]
impl From<elf::Error> for Error {
fn from(err: elf::Error) -> Self {
Error::Elf(err)
}
}
#[cfg(all(feature = "bzimage", any(target_arch = "x86", target_arch = "x86_64")))]
impl From<bzimage::Error> for Error {
fn from(err: bzimage::Error) -> Self {
Error::Bzimage(err)
}
}
#[cfg(all(feature = "pe", target_arch = "aarch64"))]
impl From<pe::Error> for Error {
fn from(err: pe::Error) -> Self {
Error::Pe(err)
}
}
/// Result of [`KernelLoader.load()`](trait.KernelLoader.html#tymethod.load).
///
/// This specifies where the kernel is loading and passes additional
/// information for the rest of the boot process to be completed by
/// the VMM.
#[derive(Clone, Copy, Debug, Default, PartialEq)]
pub struct KernelLoaderResult {
/// Address in the guest memory where the kernel image starts to be loaded.
pub kernel_load: GuestAddress,
/// Offset in guest memory corresponding to the end of kernel image, in case the device tree
/// blob and initrd will be loaded adjacent to kernel image.
pub kernel_end: GuestUsize,
/// Configuration for the VMM to use to fill zero page for bzImage direct boot.
/// See <https://www.kernel.org/doc/Documentation/x86/boot.txt>.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub setup_header: Option<bootparam::setup_header>,
/// Availability of a PVH entry point. Only used for ELF boot, indicates whether the kernel
/// supports the PVH boot protocol as described in:
/// <https://xenbits.xen.org/docs/unstable/misc/pvh.html>
#[cfg(all(feature = "elf", any(target_arch = "x86", target_arch = "x86_64")))]
pub pvh_boot_cap: elf::PvhBootCapability,
}
/// Trait that specifies kernel image loading support.
pub trait KernelLoader {
/// How to load a specific kernel image format into the guest memory.
///
/// # Arguments
///
/// * `guest_mem`: [`GuestMemory`] to load the kernel in.
/// * `kernel_offset`: Usage varies between implementations.
/// * `kernel_image`: Kernel image to be loaded.
/// * `highmem_start_address`: Address where high memory starts.
///
/// [`GuestMemory`]: https://docs.rs/vm-memory/latest/vm_memory/guest_memory/trait.GuestMemory.html
fn load<F, M: GuestMemory>(
guest_mem: &M,
kernel_offset: Option<GuestAddress>,
kernel_image: &mut F,
highmem_start_address: Option<GuestAddress>,
) -> Result<KernelLoaderResult>
where
F: Read + ReadVolatile + Seek;
}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
// SAFETY: The layout of the structure is fixed and can be initialized by
// reading its content from byte array.
unsafe impl ByteValued for bootparam::setup_header {}
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
// SAFETY: The layout of the structure is fixed and can be initialized by
// reading its content from byte array.
unsafe impl ByteValued for bootparam::boot_params {}
/// Writes the command line string to the given guest memory slice.
///
/// # Arguments
///
/// * `guest_mem` - [`GuestMemory`] that will be partially overwritten by the command line.
/// * `guest_addr` - The address in `guest_mem` at which to load the command line.
/// * `cmdline` - The kernel command line.
///
/// [`GuestMemory`]: https://docs.rs/vm-memory/latest/vm_memory/guest_memory/trait.GuestMemory.html
///
/// # Examples
///
/// ```rust
/// # use std::ffi::CStr;
/// # extern crate vm_memory;
/// # use linux_loader::loader::*;
/// # use vm_memory::{Bytes, GuestAddress};
/// # type GuestMemoryMmap = vm_memory::GuestMemoryMmap<()>;
/// let mem_size: usize = 0x1000000;
/// let gm = GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), mem_size)]).unwrap();
/// let mut cl = Cmdline::new(10).unwrap();
/// cl.insert("foo", "bar");
/// let mut buf = vec![0u8;8];
/// let result = load_cmdline(&gm, GuestAddress(0x1000), &cl).unwrap();
/// gm.read_slice(buf.as_mut_slice(), GuestAddress(0x1000)).unwrap();
/// assert_eq!(buf.as_slice(), "foo=bar\0".as_bytes());
pub fn load_cmdline<M: GuestMemory>(
guest_mem: &M,
guest_addr: GuestAddress,
cmdline: &Cmdline,
) -> Result<()> {
// We need a null terminated string because that's what the Linux
// kernel expects when parsing the command line:
// https://elixir.bootlin.com/linux/v5.10.139/source/kernel/params.c#L179
let cmdline_string = cmdline
.as_cstring()
.map_err(|_| Error::InvalidCommandLine)?;
let cmdline_bytes = cmdline_string.as_bytes_with_nul();
let end = guest_addr
// Underflow not possible because the cmdline contains at least
// a byte (null terminator)
.checked_add((cmdline_bytes.len() - 1) as u64)
.ok_or(Error::CommandLineOverflow)?;
if end > guest_mem.last_addr() {
return Err(Error::CommandLineOverflow);
}
guest_mem
.write_slice(cmdline_bytes, guest_addr)
.map_err(|_| Error::CommandLineCopy)?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use vm_memory::{Address, GuestAddress};
type GuestMemoryMmap = vm_memory::GuestMemoryMmap<()>;
const MEM_SIZE: u64 = 0x100_0000;
fn create_guest_mem() -> GuestMemoryMmap {
GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), (MEM_SIZE as usize))]).unwrap()
}
#[test]
fn test_cmdline_overflow() {
let gm = create_guest_mem();
let mut cl = Cmdline::new(10).unwrap();
cl.insert_str("12345").unwrap();
let cmdline_address = GuestAddress(u64::MAX - 5);
assert_eq!(
Err(Error::CommandLineOverflow),
load_cmdline(&gm, cmdline_address, &cl)
);
let cmdline_address = GuestAddress(MEM_SIZE - 5);
assert_eq!(
Err(Error::CommandLineOverflow),
load_cmdline(&gm, cmdline_address, &cl)
);
let cmdline_address = GuestAddress(MEM_SIZE - 6);
assert!(load_cmdline(&gm, cmdline_address, &cl).is_ok());
}
#[test]
fn test_cmdline_write_end_regresion() {
let gm = create_guest_mem();
let mut cmdline_address = GuestAddress(45);
let sample_buf = &[1; 100];
// Fill in guest memory with non zero bytes
gm.write(sample_buf, cmdline_address).unwrap();
let mut cl = Cmdline::new(10).unwrap();
// Test loading an empty cmdline
load_cmdline(&gm, cmdline_address, &cl).unwrap();
let val: u8 = gm.read_obj(cmdline_address).unwrap();
assert_eq!(val, b'\0');
// Test loading an non-empty cmdline
cl.insert_str("123").unwrap();
load_cmdline(&gm, cmdline_address, &cl).unwrap();
let val: u8 = gm.read_obj(cmdline_address).unwrap();
assert_eq!(val, b'1');
cmdline_address = cmdline_address.unchecked_add(1);
let val: u8 = gm.read_obj(cmdline_address).unwrap();
assert_eq!(val, b'2');
cmdline_address = cmdline_address.unchecked_add(1);
let val: u8 = gm.read_obj(cmdline_address).unwrap();
assert_eq!(val, b'3');
cmdline_address = cmdline_address.unchecked_add(1);
let val: u8 = gm.read_obj(cmdline_address).unwrap();
assert_eq!(val, b'\0');
}
}