1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
//! Implementation of [`embedded-hal`] SPI traits
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal
//!
use std::cmp::Ordering;
use std::fmt;
use std::io;
use std::ops;
use std::path::Path;
/// Spidev wrapper providing the embedded-hal [`SpiDevice`] trait.
///
/// Use this struct when you want a single spidev device, using a Linux-managed CS (chip-select) pin,
/// which is already defined in your device tree. Linux will handle sharing the bus
/// between different SPI devices, even between different processes.
///
/// You get an object that implements [`SpiDevice`], which is what most drivers require,
/// but does not implement [`SpiBus`]. In some rare cases, you may require [`SpiBus`]
/// instead; for that refer to [`SpidevBus`] below. You may also want to use [`SpiBus`]
/// if you want to handle all the CS pins yourself using GPIO.
///
/// This struct wraps a [`spidev::Spidev`] struct, so it can be constructed directly
/// and the inner struct accessed if needed, for example to (re)configure the SPI settings.
///
/// Note that [delay operations] on this device are capped to 65535 microseconds.
///
/// [`SpiDevice`]: embedded_hal::spi::SpiDevice
/// [`SpiBus`]: embedded_hal::spi::SpiBus
/// [`spidev::Spidev`]: spidev::Spidev
/// [delay operations]: embedded_hal::spi::Operation::DelayUs
pub struct SpidevDevice(pub spidev::Spidev);
/// Spidev wrapper providing the embedded-hal [`SpiBus`] trait.
///
/// Use this struct when you require direct access to the underlying SPI bus, for
/// example when you want to use GPIOs as software-controlled CS (chip-select) pins to share the
/// bus with multiple devices, or because a driver requires the entire bus (for
/// example to drive smart LEDs).
///
/// Do not use this struct if you're accessing SPI devices that already appear in your
/// device tree; you will not be able to drive CS pins that are already used by `spidev`
/// as GPIOs. Instead use [`SpidevDevice`].
///
/// This struct must still be created from a [`spidev::Spidev`] device, but there are two
/// important notes:
///
/// 1. The CS pin associated with this `spidev` device will be driven whenever any device accesses
/// this bus, so it should be an unconnected or unused pin.
/// 2. No other `spidev` device on the same bus may be used as long as this `SpidevBus` exists,
/// as Linux will _not_ do anything to ensure this bus has exclusive access.
///
/// It is recommended to use a dummy `spidev` device associated with an unused CS pin, and then use
/// regular GPIOs as CS pins if required. If you are planning to share this bus using GPIOs, the
/// [`embedded-hal-bus`] crate may be of interest.
///
/// If necessary, you can [configure] the underlying [`spidev::Spidev`] instance with the
/// [`SPI_NO_CS`] flag set to prevent any CS pin activity.
///
/// [`SpiDevice`]: embedded_hal::spi::SpiDevice
/// [`SpiBus`]: embedded_hal::spi::SpiBus
/// [`embedded-hal-bus`]: https://docs.rs/embedded-hal-bus/
/// [`spidev::Spidev`]: spidev::Spidev
/// [delay operations]: embedded_hal::spi::Operation::DelayUs
/// [configure]: spidev::Spidev::configure
/// [`SPI_NO_CS`]: spidev::SpiModeFlags::SPI_NO_CS
pub struct SpidevBus(pub spidev::Spidev);
impl SpidevDevice {
/// See [`spidev::Spidev::open`] for details.
///
/// The provided `path` is for the specific device you wish to access.
/// Access to the bus is shared with other devices via the Linux kernel.
pub fn open<P>(path: P) -> Result<Self, SPIError>
where
P: AsRef<Path>,
{
spidev::Spidev::open(path)
.map(SpidevDevice)
.map_err(|e| e.into())
}
}
impl SpidevBus {
/// See [`spidev::Spidev::open`] for details.
///
/// The provided `path` must be the _only_ device in use on its bus,
/// and note its own CS pin will be asserted for all device access,
/// so the path should be to a dummy device used only to access
/// the underlying bus.
pub fn open<P>(path: P) -> Result<Self, SPIError>
where
P: AsRef<Path>,
{
spidev::Spidev::open(path)
.map(SpidevBus)
.map_err(|e| e.into())
}
}
impl ops::Deref for SpidevDevice {
type Target = spidev::Spidev;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl ops::DerefMut for SpidevDevice {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl ops::Deref for SpidevBus {
type Target = spidev::Spidev;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl ops::DerefMut for SpidevBus {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
mod embedded_hal_impl {
use super::*;
use embedded_hal::spi::ErrorType;
use embedded_hal::spi::{Operation as SpiOperation, SpiBus, SpiDevice};
use spidev::SpidevTransfer;
use std::convert::TryInto;
use std::io::{Read, Write};
impl ErrorType for SpidevDevice {
type Error = SPIError;
}
impl ErrorType for SpidevBus {
type Error = SPIError;
}
impl SpiBus<u8> for SpidevBus {
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
self.0.read_exact(words).map_err(|err| SPIError { err })
}
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
self.0.write_all(words).map_err(|err| SPIError { err })
}
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
let read_len = read.len();
match read_len.cmp(&write.len()) {
Ordering::Less => self.0.transfer_multiple(&mut [
SpidevTransfer::read_write(&write[..read_len], read),
SpidevTransfer::write(&write[read_len..]),
]),
Ordering::Equal => self
.0
.transfer(&mut SpidevTransfer::read_write(write, read)),
Ordering::Greater => {
let (read1, read2) = read.split_at_mut(write.len());
self.0.transfer_multiple(&mut [
SpidevTransfer::read_write(write, read1),
SpidevTransfer::read(read2),
])
}
}
.map_err(|err| SPIError { err })
}
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
let tx = words.to_owned();
self.0
.transfer(&mut SpidevTransfer::read_write(&tx, words))
.map_err(|err| SPIError { err })
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.0.flush().map_err(|err| SPIError { err })
}
}
impl SpiDevice for SpidevDevice {
/// Perform a transaction against the device. [Read more][transaction]
///
/// [Delay operations][delay] are capped to 65535 microseconds.
///
/// [transaction]: SpiDevice::transaction
/// [delay]: SpiOperation::DelayUs
fn transaction(
&mut self,
operations: &mut [SpiOperation<'_, u8>],
) -> Result<(), Self::Error> {
let mut transfers = Vec::with_capacity(operations.len());
for op in operations {
match op {
SpiOperation::Read(buf) => transfers.push(SpidevTransfer::read(buf)),
SpiOperation::Write(buf) => transfers.push(SpidevTransfer::write(buf)),
SpiOperation::Transfer(read, write) => match read.len().cmp(&write.len()) {
Ordering::Less => {
let n = read.len();
transfers.push(SpidevTransfer::read_write(&write[..n], read));
transfers.push(SpidevTransfer::write(&write[n..]));
}
Ordering::Equal => transfers.push(SpidevTransfer::read_write(write, read)),
Ordering::Greater => {
let (read1, read2) = read.split_at_mut(write.len());
transfers.push(SpidevTransfer::read_write(write, read1));
transfers.push(SpidevTransfer::read(read2));
}
},
SpiOperation::TransferInPlace(buf) => {
let tx = unsafe {
let p = buf.as_ptr();
std::slice::from_raw_parts(p, buf.len())
};
transfers.push(SpidevTransfer::read_write(tx, buf));
}
SpiOperation::DelayNs(ns) => {
let us = {
if *ns == 0 {
0
} else {
let us = *ns / 1000;
if us == 0 {
1
} else {
(us).try_into().unwrap_or(u16::MAX)
}
}
};
transfers.push(SpidevTransfer::delay(us));
}
}
}
self.0
.transfer_multiple(&mut transfers)
.map_err(|err| SPIError { err })?;
self.flush()?;
Ok(())
}
}
}
/// Error type wrapping [io::Error](io::Error) to implement [embedded_hal::spi::ErrorKind]
#[derive(Debug)]
pub struct SPIError {
err: io::Error,
}
impl SPIError {
/// Fetch inner (concrete) [`LinuxI2CError`]
pub fn inner(&self) -> &io::Error {
&self.err
}
}
impl From<io::Error> for SPIError {
fn from(err: io::Error) -> Self {
Self { err }
}
}
impl embedded_hal::spi::Error for SPIError {
#[allow(clippy::match_single_binding)]
fn kind(&self) -> embedded_hal::spi::ErrorKind {
use embedded_hal::spi::ErrorKind;
// TODO: match any errors here if we can find any that are relevant
ErrorKind::Other
}
}
impl fmt::Display for SPIError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.err)
}
}
impl std::error::Error for SPIError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
Some(&self.err)
}
}