1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! Implementation of [`embedded-hal`] timer traits
//!
//! [`embedded-hal`]: https://docs.rs/embedded-hal

use core::convert::Infallible;
use std::time::{Duration, Instant};

/// Marker trait that indicates that a timer is periodic
pub trait Periodic {}

/// A count down timer
///
/// Note that this is borrowed from `embedded-hal` 0.2.x and will be in use until the `1.x` version provides one.
///
/// # Contract
///
/// - `self.start(count); block!(self.wait());` MUST block for AT LEAST the time specified by
/// `count`.
///
/// *Note* that the implementer doesn't necessarily have to be a *downcounting* timer; it could also
/// be an *upcounting* timer as long as the above contract is upheld.
///
/// # Examples
///
/// You can use this timer to create delays
///
/// ```
/// use std::time::Duration;
/// use nb::block;
/// use linux_embedded_hal::{CountDown, SysTimer};
///
/// fn main() {
///     let mut led: Led = {
///         // ..
/// #       Led
///     };
///     let mut timer = SysTimer::new();
///
///     Led.on();
///     timer.start(Duration::from_millis(1000)).unwrap();
///     block!(timer.wait()); // blocks for 1 second
///     Led.off();
/// }
///
/// # use core::convert::Infallible;
/// # struct Seconds(u32);
/// # trait U32Ext { fn s(self) -> Seconds; }
/// # impl U32Ext for u32 { fn s(self) -> Seconds { Seconds(self) } }
/// # struct Led;
/// # impl Led {
/// #     pub fn off(&mut self) {}
/// #     pub fn on(&mut self) {}
/// # }
/// ```
pub trait CountDown {
    /// An enumeration of `CountDown` errors.
    ///
    /// For infallible implementations, will be `Infallible`
    type Error: core::fmt::Debug;

    /// The unit of time used by this timer
    type Time;

    /// Starts a new count down
    fn start<T>(&mut self, count: T) -> Result<(), Self::Error>
    where
        T: Into<Self::Time>;

    /// Non-blockingly "waits" until the count down finishes
    ///
    /// # Contract
    ///
    /// - If `Self: Periodic`, the timer will start a new count down right after the last one
    /// finishes.
    /// - Otherwise the behavior of calling `wait` after the last call returned `Ok` is UNSPECIFIED.
    /// Implementers are suggested to panic on this scenario to signal a programmer error.
    fn wait(&mut self) -> nb::Result<(), Self::Error>;
}

impl<T: CountDown> CountDown for &mut T {
    type Error = T::Error;

    type Time = T::Time;

    fn start<TIME>(&mut self, count: TIME) -> Result<(), Self::Error>
    where
        TIME: Into<Self::Time>,
    {
        T::start(self, count)
    }

    fn wait(&mut self) -> nb::Result<(), Self::Error> {
        T::wait(self)
    }
}

/// A periodic timer based on [`std::time::Instant`][instant], which is a
/// monotonically nondecreasing clock.
///
/// [instant]: https://doc.rust-lang.org/std/time/struct.Instant.html
pub struct SysTimer {
    start: Instant,
    duration: Duration,
}

impl SysTimer {
    /// Create a new timer instance.
    ///
    /// The `duration` will be initialized to 0, so make sure to call `start`
    /// with your desired timer duration before calling `wait`.
    pub fn new() -> SysTimer {
        SysTimer {
            start: Instant::now(),
            duration: Duration::from_millis(0),
        }
    }
}

impl Default for SysTimer {
    fn default() -> SysTimer {
        SysTimer::new()
    }
}

impl CountDown for SysTimer {
    type Error = Infallible;
    type Time = Duration;

    fn start<T>(&mut self, count: T) -> Result<(), Self::Error>
    where
        T: Into<Self::Time>,
    {
        self.start = Instant::now();
        self.duration = count.into();
        Ok(())
    }

    fn wait(&mut self) -> nb::Result<(), Self::Error> {
        if (Instant::now() - self.start) >= self.duration {
            // Restart the timer to fulfill the contract by `Periodic`
            self.start = Instant::now();
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }
}

impl Periodic for SysTimer {}

#[cfg(test)]
mod tests {
    use super::*;

    /// Ensure that a 100 ms delay takes at least 100 ms,
    /// but not longer than 500 ms.
    #[test]
    fn test_delay() {
        let mut timer = SysTimer::new();
        let before = Instant::now();
        timer.start(Duration::from_millis(100)).unwrap();
        nb::block!(timer.wait()).unwrap();
        let after = Instant::now();
        let duration_ms = (after - before).as_millis();
        assert!(duration_ms >= 100);
        assert!(duration_ms < 500);
    }

    /// Ensure that the timer is periodic.
    #[test]
    fn test_periodic() {
        let mut timer = SysTimer::new();
        let before = Instant::now();
        timer.start(Duration::from_millis(100)).unwrap();
        nb::block!(timer.wait()).unwrap();
        let after1 = Instant::now();
        let duration_ms_1 = (after1 - before).as_millis();
        assert!(duration_ms_1 >= 100);
        assert!(duration_ms_1 < 500);
        nb::block!(timer.wait()).unwrap();
        let after2 = Instant::now();
        let duration_ms_2 = (after2 - after1).as_millis();
        assert!(duration_ms_2 >= 100);
        assert!(duration_ms_2 < 500);
    }
}