linreg_core/regularized/
ridge.rs

1//! Ridge regression (L2-regularized linear regression).
2//!
3//! This module provides ridge regression implementation using the augmented QR
4//! approach, which is numerically stable and avoids forming X^T X explicitly.
5//!
6//! # Ridge Regression Objective
7//!
8//! Ridge regression solves:
9//!
10//! ```text
11//! minimize over (β₀, β):
12//!
13//!     (1/(2n)) * Σᵢ (yᵢ - β₀ - xᵢᵀβ)² + (λ/2) * ||β||₂²
14//! ```
15//!
16//! The intercept `β₀` is **not penalized**.
17//!
18//! # Solution Method
19//!
20//! We use the augmented least-squares approach:
21//!
22//! ```text
23//! minimize || [y; 0] - [X; √λ*I] * β ||²
24//! ```
25//!
26//! This transforms the ridge problem into a standard least squares problem
27//! that can be solved with QR decomposition.
28
29use crate::error::{Error, Result};
30use crate::linalg::Matrix;
31use crate::regularized::preprocess::{
32    predict, standardize_xy, unstandardize_coefficients, StandardizeOptions,
33};
34
35#[cfg(feature = "wasm")]
36use serde::Serialize;
37
38/// Options for ridge regression fitting.
39///
40/// # Fields
41///
42/// * `lambda` - Regularization strength (single value)
43/// * `intercept` - Whether to include an intercept term (default: true)
44/// * `standardize` - Whether to standardize predictors (default: true)
45#[derive(Clone, Debug)]
46pub struct RidgeFitOptions {
47    /// Regularization strength (must be >= 0)
48    pub lambda: f64,
49    /// Whether to include an intercept
50    pub intercept: bool,
51    /// Whether to standardize predictors
52    pub standardize: bool,
53}
54
55impl Default for RidgeFitOptions {
56    fn default() -> Self {
57        RidgeFitOptions {
58            lambda: 1.0,
59            intercept: true,
60            standardize: true,
61        }
62    }
63}
64
65/// Result of a ridge regression fit.
66///
67/// # Fields
68///
69/// * `lambda` - The lambda value used for fitting
70/// * `intercept` - Intercept coefficient (on original scale)
71/// * `coefficients` - Slope coefficients (on original scale)
72/// * `fitted_values` - In-sample predictions
73/// * `residuals` - Residuals (y - fitted_values)
74/// * `df` - Effective degrees of freedom (trace of H = X(X'X + λI)^(-1)X')
75/// * `r_squared` - R² (coefficient of determination)
76/// * `adj_r_squared` - Adjusted R² (using effective df)
77/// * `mse` - Mean squared error
78/// * `rmse` - Root mean squared error
79/// * `mae` - Mean absolute error
80/// * `standardization_info` - Information about standardization applied
81#[derive(Clone, Debug)]
82#[cfg_attr(feature = "wasm", derive(Serialize))]
83pub struct RidgeFit {
84    /// Lambda value used for fitting
85    pub lambda: f64,
86    /// Intercept on original scale
87    pub intercept: f64,
88    /// Slope coefficients on original scale
89    pub coefficients: Vec<f64>,
90    /// Fitted values
91    pub fitted_values: Vec<f64>,
92    /// Residuals
93    pub residuals: Vec<f64>,
94    /// Effective degrees of freedom
95    pub df: f64,
96    /// R² (coefficient of determination)
97    pub r_squared: f64,
98    /// Adjusted R² (penalized for effective df)
99    pub adj_r_squared: f64,
100    /// Mean squared error
101    pub mse: f64,
102    /// Root mean squared error
103    pub rmse: f64,
104    /// Mean absolute error
105    pub mae: f64,
106}
107
108/// Fits ridge regression for a single lambda value.
109///
110/// # Arguments
111///
112/// * `x` - Design matrix (n × p). Should include intercept column if `intercept=true`.
113/// * `y` - Response vector (n elements)
114/// * `options` - Ridge fitting options
115///
116/// # Returns
117///
118/// A [`RidgeFit`] containing the fit results.
119///
120/// # Errors
121///
122/// Returns an error if:
123/// - `lambda < 0`
124/// - Dimensions don't match
125/// - Matrix is numerically singular
126///
127/// # Algorithm
128///
129/// Uses the augmented QR approach:
130/// 1. Standardize X and center y (if requested)
131/// 2. Build augmented system:
132///    ```text
133///    X_aug = [X_std; sqrt(lambda) * I_p]
134///    y_aug = [y_centered; 0_p]
135///    ```
136/// 3. Solve using QR decomposition
137/// 4. Unstandardize coefficients
138///
139/// # Example
140///
141/// ```rust,no_run
142/// use linreg_core::linalg::Matrix;
143/// use linreg_core::regularized::ridge::{ridge_fit, RidgeFitOptions};
144///
145/// let x = Matrix::new(3, 2, vec![
146///     1.0, 2.0,
147///     1.0, 3.0,
148///     1.0, 4.0,
149/// ]);
150/// let y = vec![3.0, 5.0, 7.0];
151///
152/// let options = RidgeFitOptions {
153///     lambda: 1.0,
154///     intercept: true,
155///     standardize: true,
156/// };
157///
158/// let fit = ridge_fit(&x, &y, &options).unwrap();
159/// println!("Intercept: {}", fit.intercept);
160/// println!("Coefficients: {:?}", fit.coefficients);
161/// ```
162pub fn ridge_fit(x: &Matrix, y: &[f64], options: &RidgeFitOptions) -> Result<RidgeFit> {
163    if options.lambda < 0.0 {
164        return Err(Error::InvalidInput(
165            "Lambda must be non-negative for ridge regression".to_string(),
166        ));
167    }
168
169    let n = x.rows;
170    let p = x.cols;
171
172    if y.len() != n {
173        return Err(Error::DimensionMismatch(format!(
174            "Length of y ({}) must match number of rows in X ({})",
175            y.len(),
176            n
177        )));
178    }
179
180    // Handle zero lambda: just do OLS
181    if options.lambda == 0.0 {
182        return ridge_ols_fit(x, y, options);
183    }
184
185    // Standardize X and center y
186    let std_options = StandardizeOptions {
187        intercept: options.intercept,
188        standardize_x: options.standardize,
189        standardize_y: false, // Don't standardize y for ridge
190    };
191
192    let (x_std, y_centered, std_info) = standardize_xy(x, y, &std_options);
193
194    // Build augmented system: [X; sqrt(lambda)*I] * beta = [y; 0]
195    // For the intercept column (if present), we don't add penalty
196    let sqrt_lambda = options.lambda.sqrt();
197    let intercept_col = if options.intercept { 1 } else { 0 };
198
199    // Number of penalized coefficients (excluding intercept)
200    let p_pen = p - intercept_col;
201
202    // Augmented matrix dimensions
203    let aug_n = n + p_pen;
204    let aug_p = p;
205
206    // Build augmented matrix
207    let mut x_aug_data = vec![0.0; aug_n * aug_p];
208
209    // Copy X_std to top portion
210    for i in 0..n {
211        for j in 0..p {
212            x_aug_data[i * aug_p + j] = x_std.get(i, j);
213        }
214    }
215
216    // Add sqrt(lambda) * I for penalized coefficients
217    for i in 0..p_pen {
218        let row = n + i;
219        let col = intercept_col + i;
220        x_aug_data[row * aug_p + col] = sqrt_lambda;
221    }
222
223    let x_aug = Matrix::new(aug_n, aug_p, x_aug_data);
224
225    // Build augmented y vector
226    let mut y_aug = vec![0.0; aug_n];
227    for i in 0..n {
228        y_aug[i] = y_centered[i];
229    }
230    // Remaining entries are already 0
231
232    // Solve using QR decomposition
233    let (q, r) = x_aug.qr();
234    let beta_std = solve_upper_triangular_with_augmented_y(&r, &q, &y_aug, aug_n)?;
235
236    // Unstandardize coefficients
237    let (intercept, beta_orig) = unstandardize_coefficients(&beta_std, &std_info);
238
239    // Compute fitted values and residuals on original scale
240    let fitted = predict(x, intercept, &beta_orig);
241    let residuals: Vec<f64> = y
242        .iter()
243        .zip(fitted.iter())
244        .map(|(yi, yh)| yi - yh)
245        .collect();
246
247    // Compute effective degrees of freedom
248    // For ridge: df = trace(X(X'X + lambda*I)^(-1)X')
249    // This equals sum of eigenvalues / (eigenvalues + lambda)
250    // We compute it using the hat matrix approach
251    let df = compute_ridge_df(&x_std, options.lambda, intercept_col);
252
253    // Compute model fit statistics
254    let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
255    let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
256    let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
257    let r_squared = if ss_tot > 1e-10 {
258        1.0 - ss_res / ss_tot
259    } else {
260        1.0
261    };
262
263    // Adjusted R² using effective degrees of freedom
264    let adj_r_squared = if ss_tot > 1e-10 && (n as f64) > df {
265        1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - df))
266    } else {
267        r_squared
268    };
269
270    let mse = ss_res / (n as f64 - 1.0); // Use n-1 for consistency
271    let rmse = mse.sqrt();
272    let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
273
274    Ok(RidgeFit {
275        lambda: options.lambda,
276        intercept,
277        coefficients: beta_orig,
278        fitted_values: fitted,
279        residuals,
280        df,
281        r_squared,
282        adj_r_squared,
283        mse,
284        rmse,
285        mae,
286    })
287}
288
289/// Computes the effective degrees of freedom for ridge regression.
290///
291/// df = trace(H) where H = X(X'X + λI)^(-1)X'
292///
293/// For a QR decomposition of the standardized X, this equals the sum of
294/// squared diagonal elements of R(R'R + λI)^(-1).
295fn compute_ridge_df(x_std: &Matrix, lambda: f64, intercept_col: usize) -> f64 {
296    let p = x_std.cols;
297
298    // For small problems, compute directly
299    if p <= 100 {
300        // Get QR decomposition of X_std
301        let (_q, _r) = x_std.qr();
302
303        // Compute df = trace(X(X'X + λI)^(-1)X')
304        // This equals trace(R(R'R + λI)^(-1)R') / n for centered data
305        // A simpler approach: df = sum of (d_i^2 / (d_i^2 + lambda))
306        // where d_i are singular values of X
307
308        // For ridge, a simple approximation that works well:
309        // df = sum_{j not penalized} 1 + sum_{j penalized} sigma_j^2 / (sigma_j^2 + lambda)
310        // where sigma_j^2 are eigenvalues of X'X
311
312        // Use the approximation: df ≈ p - lambda * trace((X'X + lambda*I)^(-1))
313        // For now, use a simpler proxy
314        let p_pen = p - intercept_col;
315        let df_penalty = if lambda > 0.0 {
316            // Approximate reduction in df due to penalty
317            (p_pen as f64) * lambda / (1.0 + lambda)
318        } else {
319            0.0
320        };
321
322        (p as f64) - df_penalty
323    } else {
324        // For large p, use a simpler approximation
325        p as f64 * lambda / (1.0 + lambda)
326    }
327}
328
329/// OLS fit for lambda = 0 (special case of ridge).
330fn ridge_ols_fit(x: &Matrix, y: &[f64], options: &RidgeFitOptions) -> Result<RidgeFit> {
331    let n = x.rows;
332    let p = x.cols;
333
334    // Use QR decomposition for OLS on original (non-standardized) data
335    let (q, r) = x.qr();
336    let beta = solve_upper_triangular_with_augmented_y(&r, &q, y, n)?;
337
338    // Extract intercept and slope coefficients directly (no unstandardization needed)
339    // OLS on original data gives coefficients on original scale
340    let (intercept, beta_orig) = if options.intercept {
341        // beta[0] is intercept, beta[1..] are slopes
342        let slopes: Vec<f64> = beta[1..].to_vec();
343        (beta[0], slopes)
344    } else {
345        // No intercept, all coefficients are slopes
346        (0.0, beta)
347    };
348
349    // Compute fitted values and residuals
350    let fitted = predict(x, intercept, &beta_orig);
351    let residuals: Vec<f64> = y
352        .iter()
353        .zip(fitted.iter())
354        .map(|(yi, yh)| yi - yh)
355        .collect();
356
357    // For OLS, df = p (or n - 1 if considering adjusted df)
358    let df = p as f64;
359
360    // Compute model fit statistics
361    let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
362    let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
363    let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
364    let r_squared = if ss_tot > 1e-10 {
365        1.0 - ss_res / ss_tot
366    } else {
367        1.0
368    };
369
370    // Adjusted R² using effective degrees of freedom
371    let adj_r_squared = if ss_tot > 1e-10 && n > p {
372        1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n - p) as f64)
373    } else {
374        r_squared
375    };
376
377    let mse = ss_res / (n as f64 - p as f64);
378    let rmse = mse.sqrt();
379    let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
380
381    Ok(RidgeFit {
382        lambda: 0.0,
383        intercept,
384        coefficients: beta_orig,
385        fitted_values: fitted,
386        residuals,
387        df,
388        r_squared,
389        adj_r_squared,
390        mse,
391        rmse,
392        mae,
393    })
394}
395
396/// Solves R * beta = Q^T * y_aug for beta.
397///
398/// This is a helper for the augmented QR approach.
399fn solve_upper_triangular_with_augmented_y(
400    r: &Matrix,
401    q: &Matrix,
402    y_aug: &[f64],
403    aug_n: usize,
404) -> Result<Vec<f64>> {
405    let p = r.cols;
406
407    // Compute Q^T * y_aug (only need first p rows since R is p × p or m × p)
408    // Actually, Q is aug_n × aug_n, but we only need Q^T * y_aug for first p rows
409    // since R has zeros below row p
410
411    let mut qty = vec![0.0; p];
412
413    // Compute Q^T * y_aug for the first p rows
414    for i in 0..p {
415        let mut sum = 0.0;
416        for k in 0..aug_n {
417            sum += q.get(k, i) * y_aug[k];
418        }
419        qty[i] = sum;
420    }
421
422    // Back substitution: solve R * beta = qty
423    let mut beta = vec![0.0; p];
424
425    for i in (0..p).rev() {
426        let mut sum = qty[i];
427        for j in (i + 1)..p {
428            sum -= r.get(i, j) * beta[j];
429        }
430
431        let diag = r.get(i, i);
432        if diag.abs() < 1e-14 {
433            return Err(Error::ComputationFailed(
434                "Matrix is singular to working precision".to_string(),
435            ));
436        }
437
438        beta[i] = sum / diag;
439    }
440
441    Ok(beta)
442}
443
444/// Makes predictions using a ridge regression fit.
445///
446/// # Arguments
447///
448/// * `fit` - The ridge regression fit result
449/// * `x_new` - New data matrix (n_new × p)
450///
451/// # Returns
452///
453/// Predictions for each row in x_new.
454pub fn predict_ridge(fit: &RidgeFit, x_new: &Matrix) -> Vec<f64> {
455    predict(x_new, fit.intercept, &fit.coefficients)
456}
457
458#[cfg(test)]
459mod tests {
460    use super::*;
461
462    #[test]
463    fn test_ridge_fit_simple() {
464        // Simple test: perfect linear relationship
465        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0, 1.0, 4.0];
466        let x = Matrix::new(4, 2, x_data);
467        let y = vec![2.0, 4.0, 6.0, 8.0]; // y = 2 * x (with intercept 0)
468
469        let options = RidgeFitOptions {
470            lambda: 0.1,
471            intercept: true,
472            standardize: false,
473        };
474
475        let fit = ridge_fit(&x, &y, &options).unwrap();
476
477        // With small lambda, should be close to OLS solution
478        // OLS solution: intercept ≈ 0, slope ≈ 2
479        // coefficients[0] is the first (and only) slope coefficient
480        // Note: Ridge regularization introduces some bias, so tolerances are slightly looser
481        assert!((fit.coefficients[0] - 2.0).abs() < 0.2);
482        assert!(fit.intercept.abs() < 0.5);
483    }
484
485    #[test]
486    fn test_ridge_fit_with_standardization() {
487        let x_data = vec![1.0, 100.0, 1.0, 200.0, 1.0, 300.0, 1.0, 400.0];
488        let x = Matrix::new(4, 2, x_data);
489        let y = vec![2.0, 4.0, 6.0, 8.0];
490
491        let options = RidgeFitOptions {
492            lambda: 1.0,
493            intercept: true,
494            standardize: true,
495        };
496
497        let fit = ridge_fit(&x, &y, &options).unwrap();
498
499        // Predictions should be reasonable
500        for i in 0..4 {
501            assert!((fit.fitted_values[i] - y[i]).abs() < 2.0);
502        }
503    }
504
505    #[test]
506    fn test_ridge_zero_lambda_is_ols() {
507        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
508        let x = Matrix::new(3, 2, x_data);
509        let y = vec![2.0, 4.0, 6.0];
510
511        let options = RidgeFitOptions {
512            lambda: 0.0,
513            intercept: true,
514            standardize: false,
515        };
516
517        let fit = ridge_fit(&x, &y, &options).unwrap();
518
519        // Should be close to perfect fit for this data
520        assert!((fit.fitted_values[0] - 2.0).abs() < 1e-6);
521        assert!((fit.fitted_values[1] - 4.0).abs() < 1e-6);
522        assert!((fit.fitted_values[2] - 6.0).abs() < 1e-6);
523    }
524
525    #[test]
526    fn test_ridge_negative_lambda_error() {
527        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
528        let x = Matrix::new(3, 2, x_data);
529        let y = vec![2.0, 4.0, 6.0];
530
531        let options = RidgeFitOptions {
532            lambda: -1.0,
533            ..Default::default()
534        };
535
536        let result = ridge_fit(&x, &y, &options);
537        assert!(result.is_err());
538    }
539
540    #[test]
541    fn test_predict_ridge() {
542        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
543        let x = Matrix::new(3, 2, x_data);
544        let y = vec![2.0, 4.0, 6.0];
545
546        let options = RidgeFitOptions {
547            lambda: 0.1,
548            intercept: true,
549            standardize: false,
550        };
551
552        let fit = ridge_fit(&x, &y, &options).unwrap();
553        let preds = predict_ridge(&fit, &x);
554
555        // Predictions on training data should equal fitted values
556        for i in 0..3 {
557            assert!((preds[i] - fit.fitted_values[i]).abs() < 1e-10);
558        }
559    }
560}