linreg_core/regularized/
lasso.rs

1//! Lasso regression (L1-regularized linear regression).
2//!
3//! This module provides lasso regression implementation using cyclical coordinate
4//! descent with soft-thresholding, matching glmnet's approach.
5//!
6//! # Lasso Regression Objective
7//!
8//! Lasso regression solves:
9//!
10//! ```text
11//! minimize over (β₀, β):
12//!
13//!     (1/(2n)) * Σᵢ (yᵢ - β₀ - xᵢᵀβ)² + λ * ||β||₁
14//! ```
15//!
16//! The intercept `β₀` is **not penalized**.
17//!
18//! # Solution Method
19//!
20//! Uses cyclical coordinate descent with soft-thresholding:
21//!
22//! 1. For standardized X, each coordinate update has a closed form
23//! 2. Soft-thresholding operator: S(z, γ) = sign(z) * max(|z| - γ, 0)
24//! 3. Warm starts along lambda path for efficiency
25
26use crate::error::{Error, Result};
27use crate::linalg::Matrix;
28use crate::regularized::preprocess::{
29    predict, standardize_xy, unstandardize_coefficients, StandardizeOptions,
30};
31
32#[cfg(feature = "wasm")]
33use serde::Serialize;
34
35/// Soft-thresholding operator: S(z, γ) = sign(z) * max(|z| - γ, 0).
36///
37/// # Arguments
38///
39/// * `z` - Input value
40/// * `gamma` - Threshold value (must be >= 0)
41///
42/// # Returns
43///
44/// The soft-thresholded value.
45///
46/// # Formula
47///
48/// ```text
49/// S(z, γ) = {
50///     z - γ    if z > 0 and |z| > γ
51///     z + γ    if z < 0 and |z| > γ
52///     0        if |z| <= γ
53/// }
54/// ```
55pub fn soft_threshold(z: f64, gamma: f64) -> f64 {
56    if gamma < 0.0 {
57        panic!("Soft threshold gamma must be non-negative");
58    }
59    if z > gamma {
60        z - gamma
61    } else if z < -gamma {
62        z + gamma
63    } else {
64        0.0
65    }
66}
67
68/// Options for lasso regression fitting.
69///
70/// # Fields
71///
72/// * `lambda` - Regularization strength (single value)
73/// * `intercept` - Whether to include an intercept term (default: true)
74/// * `standardize` - Whether to standardize predictors (default: true)
75/// * `max_iter` - Maximum iterations per lambda (default: 1000)
76/// * `tol` - Convergence tolerance (default: 1e-7)
77/// * `penalty_factor` - Optional per-feature penalty factors
78#[derive(Clone, Debug)]
79pub struct LassoFitOptions {
80    /// Regularization strength (must be >= 0)
81    pub lambda: f64,
82    /// Whether to include an intercept
83    pub intercept: bool,
84    /// Whether to standardize predictors
85    pub standardize: bool,
86    /// Maximum coordinate descent iterations
87    pub max_iter: usize,
88    /// Convergence tolerance on coefficient changes
89    pub tol: f64,
90    /// Per-feature penalty factors (optional)
91    pub penalty_factor: Option<Vec<f64>>,
92}
93
94impl Default for LassoFitOptions {
95    fn default() -> Self {
96        LassoFitOptions {
97            lambda: 1.0,
98            intercept: true,
99            standardize: true,
100            max_iter: 1000,
101            tol: 1e-7,
102            penalty_factor: None,
103        }
104    }
105}
106
107/// Result of a lasso regression fit.
108///
109/// # Fields
110///
111/// * `lambda` - The lambda value used for fitting
112/// * `intercept` - Intercept coefficient (on original scale)
113/// * `coefficients` - Slope coefficients (on original scale, may contain zeros)
114/// * `fitted_values` - In-sample predictions
115/// * `residuals` - Residuals (y - fitted_values)
116/// * `n_nonzero` - Number of non-zero coefficients (excluding intercept)
117/// * `iterations` - Number of coordinate descent iterations
118/// * `converged` - Whether the algorithm converged
119/// * `r_squared` - R² (coefficient of determination)
120/// * `adj_r_squared` - Adjusted R² (using effective df based on n_nonzero)
121/// * `mse` - Mean squared error
122/// * `rmse` - Root mean squared error
123/// * `mae` - Mean absolute error
124#[derive(Clone, Debug)]
125#[cfg_attr(feature = "wasm", derive(Serialize))]
126pub struct LassoFit {
127    /// Lambda value used for fitting
128    pub lambda: f64,
129    /// Intercept on original scale
130    pub intercept: f64,
131    /// Slope coefficients on original scale
132    pub coefficients: Vec<f64>,
133    /// Fitted values
134    pub fitted_values: Vec<f64>,
135    /// Residuals
136    pub residuals: Vec<f64>,
137    /// Number of non-zero coefficients
138    pub n_nonzero: usize,
139    /// Number of iterations performed
140    pub iterations: usize,
141    /// Whether convergence was achieved
142    pub converged: bool,
143    /// R² (coefficient of determination)
144    pub r_squared: f64,
145    /// Adjusted R² (penalized for effective number of parameters)
146    pub adj_r_squared: f64,
147    /// Mean squared error
148    pub mse: f64,
149    /// Root mean squared error
150    pub rmse: f64,
151    /// Mean absolute error
152    pub mae: f64,
153}
154
155/// Fits lasso regression for a single lambda value.
156///
157/// # Arguments
158///
159/// * `x` - Design matrix (n × p). Should include intercept column if `intercept=true`.
160/// * `y` - Response vector (n elements)
161/// * `options` - Lasso fitting options
162///
163/// # Returns
164///
165/// A [`LassoFit`] containing the fit results.
166///
167/// # Errors
168///
169/// Returns an error if:
170/// - `lambda < 0`
171/// - Dimensions don't match
172/// - Maximum iterations reached without convergence
173///
174/// # Algorithm
175///
176/// Uses cyclical coordinate descent:
177/// 1. Standardize X and center y (if requested)
178/// 2. Initialize coefficients (zeros or warm start)
179/// 3. For each feature j:
180///    - Compute partial residual: r = y - X_{-j} * beta_{-j}
181///    - Compute correlation: rho_j = X_j^T * r / n
182///    - Apply soft-thresholding: beta_j = S(rho_j, lambda) / (1 + 0)
183///    - (For lasso with standardized X, denominator is 1)
184/// 4. Check for convergence
185/// 5. Unstandardize coefficients
186///
187/// # Example
188///
189/// ```rust,no_run
190/// use linreg_core::linalg::Matrix;
191/// use linreg_core::regularized::lasso::{lasso_fit, LassoFitOptions};
192///
193/// let x = Matrix::new(3, 2, vec![
194///     1.0, 2.0,
195///     1.0, 3.0,
196///     1.0, 4.0,
197/// ]);
198/// let y = vec![3.0, 5.0, 7.0];
199///
200/// let options = LassoFitOptions {
201///     lambda: 1.0,
202///     intercept: true,
203///     standardize: true,
204///     ..Default::default()
205/// };
206///
207/// let fit = lasso_fit(&x, &y, &options).unwrap();
208/// println!("Non-zero coefficients: {}", fit.n_nonzero);
209/// ```
210pub fn lasso_fit(x: &Matrix, y: &[f64], options: &LassoFitOptions) -> Result<LassoFit> {
211    if options.lambda < 0.0 {
212        return Err(Error::InvalidInput(
213            "Lambda must be non-negative for lasso regression".to_string(),
214        ));
215    }
216
217    let n = x.rows;
218    let p = x.cols;
219
220    if y.len() != n {
221        return Err(Error::DimensionMismatch(format!(
222            "Length of y ({}) must match number of rows in X ({})",
223            y.len(),
224            n
225        )));
226    }
227
228    // Handle zero lambda: just do OLS
229    if options.lambda == 0.0 {
230        return lasso_ols_fit(x, y, options);
231    }
232
233    // Standardize X and center y
234    let std_options = StandardizeOptions {
235        intercept: options.intercept,
236        standardize_x: options.standardize,
237        standardize_y: false,
238    };
239
240    let (x_std, y_centered, std_info) = standardize_xy(x, y, &std_options);
241
242    // Initialize coefficients to zero
243    let mut beta_std = vec![0.0; p];
244
245    // Determine which columns are penalized
246    let start_col = if options.intercept { 1 } else { 0 };
247
248    // Run coordinate descent
249    let (iterations, converged) = coordinate_descent(
250        &x_std,
251        &y_centered,
252        &mut beta_std,
253        options.lambda,
254        start_col,
255        options.max_iter,
256        options.tol,
257        options.penalty_factor.as_deref(),
258    )?;
259
260    // Unstandardize coefficients (beta_orig now contains only slope coefficients)
261    let (intercept, beta_orig) = unstandardize_coefficients(&beta_std, &std_info);
262
263    // Count non-zero coefficients (beta_orig already excludes intercept col coefficient)
264    let n_nonzero = beta_orig.iter().filter(|&&b| b.abs() > 0.0).count();
265
266    // Compute fitted values and residuals
267    let fitted = predict(x, intercept, &beta_orig);
268    let residuals: Vec<f64> = y
269        .iter()
270        .zip(fitted.iter())
271        .map(|(yi, yh)| yi - yh)
272        .collect();
273
274    // Compute model fit statistics
275    let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
276    let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
277    let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
278    let r_squared = if ss_tot > 1e-10 {
279        1.0 - ss_res / ss_tot
280    } else {
281        1.0
282    };
283
284    // For lasso, effective df = (intercept) + n_nonzero
285    // Adjusted R² uses effective degrees of freedom
286    let eff_df = 1.0 + n_nonzero as f64; // intercept + non-zero coefficients
287    let adj_r_squared = if ss_tot > 1e-10 && n > eff_df as usize {
288        1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - eff_df))
289    } else {
290        r_squared
291    };
292
293    let mse = ss_res / (n as f64 - eff_df).max(1.0);
294    let rmse = mse.sqrt();
295    let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
296
297    Ok(LassoFit {
298        lambda: options.lambda,
299        intercept,
300        coefficients: beta_orig,
301        fitted_values: fitted,
302        residuals,
303        n_nonzero,
304        iterations,
305        converged,
306        r_squared,
307        adj_r_squared,
308        mse,
309        rmse,
310        mae,
311    })
312}
313
314/// Coordinate descent for lasso.
315///
316/// # Arguments
317///
318/// * `x` - Standardized design matrix
319/// * `y` - Centered response
320/// * `beta` - Coefficient vector (modified in place)
321/// * `lambda` - Regularization strength
322/// * `start_col` - First penalized column index
323/// * `max_iter` - Maximum iterations
324/// * `tol` - Convergence tolerance
325/// * `penalty_factor` - Optional per-feature penalties
326///
327/// # Returns
328///
329/// A tuple `(iterations, converged)` indicating the number of iterations
330/// and whether convergence was achieved.
331fn coordinate_descent(
332    x: &Matrix,
333    y: &[f64],
334    beta: &mut [f64],
335    lambda: f64,
336    start_col: usize,
337    max_iter: usize,
338    tol: f64,
339    penalty_factor: Option<&[f64]>,
340) -> Result<(usize, bool)> {
341    let n = x.rows;
342    let p = x.cols;
343
344    let mut residuals: Vec<f64> = y.to_vec();
345    let mut converged = false;
346
347    // Initialize with current beta values
348    for iter in 0..max_iter {
349        let _beta_old = beta.to_vec();
350        let mut max_change: f64 = 0.0;
351
352        // Update each coordinate
353        for j in start_col..p {
354            // Skip if penalty factor is infinite (always excluded)
355            if let Some(pf) = penalty_factor {
356                if j < pf.len() && pf[j] == f64::INFINITY {
357                    beta[j] = 0.0;
358                    continue;
359                }
360            }
361
362            // Compute rho_j = x_j^T * r / n (where r includes x_j * beta_j)
363            // Actually: r = y - X*beta, and we want x_j^T * (r + x_j * beta_j) / n
364            // This equals x_j^T * (y - X_{-j} * beta_{-j}) / n
365
366            // First, remove the contribution of feature j from residuals
367            let old_beta_j = beta[j];
368            for i in 0..n {
369                residuals[i] += x.get(i, j) * old_beta_j;
370            }
371
372            // Compute rho_j = x_j^T * residuals / n
373            let mut rho_j = 0.0;
374            for i in 0..n {
375                rho_j += x.get(i, j) * residuals[i];
376            }
377            rho_j /= n as f64;
378
379            // Get penalty factor for this feature
380            let pf = penalty_factor
381                .and_then(|pf| pf.get(j))
382                .copied()
383                .unwrap_or(1.0);
384
385            // Apply soft-thresholding
386            // For standardized X, denominator is 1
387            let threshold = lambda * pf;
388            let new_beta_j = soft_threshold(rho_j, threshold);
389
390            // Update residuals with new coefficient
391            for i in 0..n {
392                residuals[i] -= x.get(i, j) * new_beta_j;
393            }
394
395            beta[j] = new_beta_j;
396
397            // Track maximum change
398            let change = (new_beta_j - old_beta_j).abs();
399            max_change = max_change.max(change);
400        }
401
402        // Check convergence
403        if max_change < tol {
404            converged = true;
405            return Ok((iter + 1, converged));
406        }
407    }
408
409    Ok((max_iter, converged))
410}
411
412/// OLS fit for lambda = 0 (special case of lasso).
413fn lasso_ols_fit(x: &Matrix, y: &[f64], options: &LassoFitOptions) -> Result<LassoFit> {
414    // Use QR decomposition for OLS on original (non-standardized) data
415    let (q, r) = x.qr();
416
417    // Solve R * beta = Q^T * y
418    let n = x.rows;
419    let p = x.cols;
420    let mut qty = vec![0.0; p];
421
422    for i in 0..p {
423        for k in 0..n {
424            qty[i] += q.get(k, i) * y[k];
425        }
426    }
427
428    let mut beta = vec![0.0; p];
429    for i in (0..p).rev() {
430        let mut sum = qty[i];
431        for j in (i + 1)..p {
432            sum -= r.get(i, j) * beta[j];
433        }
434        beta[i] = sum / r.get(i, i);
435    }
436
437    // Extract intercept and slope coefficients directly (no unstandardization needed)
438    // OLS on original data gives coefficients on original scale
439    let (intercept, beta_orig) = if options.intercept {
440        // beta[0] is intercept, beta[1..] are slopes
441        let slopes: Vec<f64> = beta[1..].to_vec();
442        (beta[0], slopes)
443    } else {
444        // No intercept, all coefficients are slopes
445        (0.0, beta)
446    };
447
448    // Compute fitted values and residuals
449    let fitted = predict(x, intercept, &beta_orig);
450    let residuals: Vec<f64> = y
451        .iter()
452        .zip(fitted.iter())
453        .map(|(yi, yh)| yi - yh)
454        .collect();
455
456    // Count non-zero coefficients (beta_orig already excludes intercept col coefficient)
457    let n_nonzero = beta_orig.iter().filter(|&&b| b.abs() > 0.0).count();
458
459    // Compute model fit statistics
460    let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
461    let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
462    let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
463    let r_squared = if ss_tot > 1e-10 {
464        1.0 - ss_res / ss_tot
465    } else {
466        1.0
467    };
468
469    // Adjusted R²
470    let eff_df = n_nonzero as f64;
471    let adj_r_squared = if ss_tot > 1e-10 && n > eff_df as usize {
472        1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - eff_df))
473    } else {
474        r_squared
475    };
476
477    let mse = ss_res / (n as f64 - p as f64);
478    let rmse = mse.sqrt();
479    let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
480
481    Ok(LassoFit {
482        lambda: 0.0,
483        intercept,
484        coefficients: beta_orig,
485        fitted_values: fitted,
486        residuals,
487        n_nonzero,
488        iterations: 1,
489        converged: true,
490        r_squared,
491        adj_r_squared,
492        mse,
493        rmse,
494        mae,
495    })
496}
497
498/// Makes predictions using a lasso regression fit.
499///
500/// # Arguments
501///
502/// * `fit` - The lasso regression fit result
503/// * `x_new` - New data matrix (n_new × p)
504///
505/// # Returns
506///
507/// Predictions for each row in x_new.
508pub fn predict_lasso(fit: &LassoFit, x_new: &Matrix) -> Vec<f64> {
509    predict(x_new, fit.intercept, &fit.coefficients)
510}
511
512#[cfg(test)]
513mod tests {
514    use super::*;
515
516    #[test]
517    fn test_soft_threshold() {
518        assert_eq!(soft_threshold(5.0, 2.0), 3.0);
519        assert_eq!(soft_threshold(-5.0, 2.0), -3.0);
520        assert_eq!(soft_threshold(1.0, 2.0), 0.0);
521        assert_eq!(soft_threshold(-1.0, 2.0), 0.0);
522        assert_eq!(soft_threshold(2.0, 2.0), 0.0);
523        assert_eq!(soft_threshold(-2.0, 2.0), 0.0);
524        assert_eq!(soft_threshold(0.0, 0.0), 0.0);
525    }
526
527    #[test]
528    fn test_lasso_fit_simple() {
529        // Simple test: y = 2*x with perfect linear relationship
530        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0, 1.0, 4.0];
531        let x = Matrix::new(4, 2, x_data);
532        let y = vec![2.0, 4.0, 6.0, 8.0];
533
534        let options = LassoFitOptions {
535            lambda: 0.01, // Very small lambda for near-OLS solution
536            intercept: true,
537            standardize: true, // Standardize for better convergence
538            ..Default::default()
539        };
540
541        let fit = lasso_fit(&x, &y, &options).unwrap();
542
543        // With small lambda, should get a good fit
544        assert!(fit.converged);
545        assert!(fit.n_nonzero > 0);
546
547        // Predictions should be close to actual values
548        for i in 0..4 {
549            assert!((fit.fitted_values[i] - y[i]).abs() < 0.5);
550        }
551    }
552
553    #[test]
554    fn test_lasso_with_large_lambda() {
555        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
556        let x = Matrix::new(3, 2, x_data);
557        let y = vec![2.0, 4.0, 6.0];
558
559        let options = LassoFitOptions {
560            lambda: 100.0,
561            intercept: true,
562            standardize: false,
563            ..Default::default()
564        };
565
566        let fit = lasso_fit(&x, &y, &options).unwrap();
567
568        // With large lambda, all coefficients should be zero
569        // Only intercept should be non-zero (equal to mean of y)
570        assert_eq!(fit.n_nonzero, 0);
571        // coefficients[0] is the first (and only) slope coefficient
572        assert!((fit.coefficients[0]).abs() < 1e-10);
573    }
574
575    #[test]
576    fn test_lasso_zero_lambda_is_ols() {
577        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
578        let x = Matrix::new(3, 2, x_data);
579        let y = vec![2.0, 4.0, 6.0];
580
581        let options = LassoFitOptions {
582            lambda: 0.0,
583            intercept: true,
584            standardize: false,
585            ..Default::default()
586        };
587
588        let fit = lasso_fit(&x, &y, &options).unwrap();
589
590        // Should be close to perfect fit
591        assert!((fit.fitted_values[0] - 2.0).abs() < 1e-6);
592        assert!((fit.fitted_values[1] - 4.0).abs() < 1e-6);
593        assert!((fit.fitted_values[2] - 6.0).abs() < 1e-6);
594    }
595
596    #[test]
597    fn test_predict_lasso() {
598        let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
599        let x = Matrix::new(3, 2, x_data);
600        let y = vec![2.0, 4.0, 6.0];
601
602        let options = LassoFitOptions {
603            lambda: 0.1,
604            intercept: true,
605            standardize: false,
606            ..Default::default()
607        };
608
609        let fit = lasso_fit(&x, &y, &options).unwrap();
610        let preds = predict_lasso(&fit, &x);
611
612        // Predictions on training data should equal fitted values
613        for i in 0..3 {
614            assert!((preds[i] - fit.fitted_values[i]).abs() < 1e-10);
615        }
616    }
617}