linreg_core/regularized/ridge.rs
1//! Ridge regression (L2-regularized linear regression).
2//!
3//! This module provides ridge regression implementation using the augmented QR
4//! approach, which is numerically stable and avoids forming X^T X explicitly.
5//!
6//! # Ridge Regression Objective
7//!
8//! Ridge regression solves:
9//!
10//! ```text
11//! minimize over (β₀, β):
12//!
13//! (1/(2n)) * Σᵢ (yᵢ - β₀ - xᵢᵀβ)² + (λ/2) * ||β||₂²
14//! ```
15//!
16//! The intercept `β₀` is **not penalized**.
17//!
18//! # Solution Method
19//!
20//! We use the augmented least-squares approach:
21//!
22//! ```text
23//! minimize || [y; 0] - [X; √λ*I] * β ||²
24//! ```
25//!
26//! This transforms the ridge problem into a standard least squares problem
27//! that can be solved with QR decomposition.
28
29use crate::error::{Error, Result};
30use crate::linalg::Matrix;
31use crate::regularized::preprocess::{
32 predict, standardize_xy, unstandardize_coefficients, StandardizeOptions,
33};
34
35#[cfg(feature = "wasm")]
36use serde::Serialize;
37
38/// Options for ridge regression fitting.
39///
40/// # Fields
41///
42/// * `lambda` - Regularization strength (single value)
43/// * `intercept` - Whether to include an intercept term (default: true)
44/// * `standardize` - Whether to standardize predictors (default: true)
45#[derive(Clone, Debug)]
46pub struct RidgeFitOptions {
47 /// Regularization strength (must be >= 0)
48 pub lambda: f64,
49 /// Whether to include an intercept
50 pub intercept: bool,
51 /// Whether to standardize predictors
52 pub standardize: bool,
53}
54
55impl Default for RidgeFitOptions {
56 fn default() -> Self {
57 RidgeFitOptions {
58 lambda: 1.0,
59 intercept: true,
60 standardize: true,
61 }
62 }
63}
64
65/// Result of a ridge regression fit.
66///
67/// # Fields
68///
69/// * `lambda` - The lambda value used for fitting
70/// * `intercept` - Intercept coefficient (on original scale)
71/// * `coefficients` - Slope coefficients (on original scale)
72/// * `fitted_values` - In-sample predictions
73/// * `residuals` - Residuals (y - fitted_values)
74/// * `df` - Effective degrees of freedom (trace of H = X(X'X + λI)^(-1)X')
75/// * `r_squared` - R² (coefficient of determination)
76/// * `adj_r_squared` - Adjusted R² (using effective df)
77/// * `mse` - Mean squared error
78/// * `rmse` - Root mean squared error
79/// * `mae` - Mean absolute error
80/// * `standardization_info` - Information about standardization applied
81#[derive(Clone, Debug)]
82#[cfg_attr(feature = "wasm", derive(Serialize))]
83pub struct RidgeFit {
84 /// Lambda value used for fitting
85 pub lambda: f64,
86 /// Intercept on original scale
87 pub intercept: f64,
88 /// Slope coefficients on original scale
89 pub coefficients: Vec<f64>,
90 /// Fitted values
91 pub fitted_values: Vec<f64>,
92 /// Residuals
93 pub residuals: Vec<f64>,
94 /// Effective degrees of freedom
95 pub df: f64,
96 /// R² (coefficient of determination)
97 pub r_squared: f64,
98 /// Adjusted R² (penalized for effective df)
99 pub adj_r_squared: f64,
100 /// Mean squared error
101 pub mse: f64,
102 /// Root mean squared error
103 pub rmse: f64,
104 /// Mean absolute error
105 pub mae: f64,
106}
107
108/// Fits ridge regression for a single lambda value.
109///
110/// # Arguments
111///
112/// * `x` - Design matrix (n × p). Should include intercept column if `intercept=true`.
113/// * `y` - Response vector (n elements)
114/// * `options` - Ridge fitting options
115///
116/// # Returns
117///
118/// A [`RidgeFit`] containing the fit results.
119///
120/// # Errors
121///
122/// Returns an error if:
123/// - `lambda < 0`
124/// - Dimensions don't match
125/// - Matrix is numerically singular
126///
127/// # Algorithm
128///
129/// Uses the augmented QR approach:
130/// 1. Standardize X and center y (if requested)
131/// 2. Build augmented system:
132/// ```text
133/// X_aug = [X_std; sqrt(lambda) * I_p]
134/// y_aug = [y_centered; 0_p]
135/// ```
136/// 3. Solve using QR decomposition
137/// 4. Unstandardize coefficients
138///
139/// # Example
140///
141/// ```rust,no_run
142/// use linreg_core::linalg::Matrix;
143/// use linreg_core::regularized::ridge::{ridge_fit, RidgeFitOptions};
144///
145/// let x = Matrix::new(3, 2, vec![
146/// 1.0, 2.0,
147/// 1.0, 3.0,
148/// 1.0, 4.0,
149/// ]);
150/// let y = vec![3.0, 5.0, 7.0];
151///
152/// let options = RidgeFitOptions {
153/// lambda: 1.0,
154/// intercept: true,
155/// standardize: true,
156/// };
157///
158/// let fit = ridge_fit(&x, &y, &options).unwrap();
159/// println!("Intercept: {}", fit.intercept);
160/// println!("Coefficients: {:?}", fit.coefficients);
161/// ```
162pub fn ridge_fit(x: &Matrix, y: &[f64], options: &RidgeFitOptions) -> Result<RidgeFit> {
163 if options.lambda < 0.0 {
164 return Err(Error::InvalidInput(
165 "Lambda must be non-negative for ridge regression".to_string(),
166 ));
167 }
168
169 let n = x.rows;
170 let p = x.cols;
171
172 if y.len() != n {
173 return Err(Error::DimensionMismatch(
174 format!("Length of y ({}) must match number of rows in X ({})", y.len(), n)
175 ));
176 }
177
178 // Handle zero lambda: just do OLS
179 if options.lambda == 0.0 {
180 return ridge_ols_fit(x, y, options);
181 }
182
183 // Standardize X and center y
184 let std_options = StandardizeOptions {
185 intercept: options.intercept,
186 standardize_x: options.standardize,
187 standardize_y: false, // Don't standardize y for ridge
188 };
189
190 let (x_std, y_centered, std_info) = standardize_xy(x, y, &std_options);
191
192 // Build augmented system: [X; sqrt(lambda)*I] * beta = [y; 0]
193 // For the intercept column (if present), we don't add penalty
194 let sqrt_lambda = options.lambda.sqrt();
195 let intercept_col = if options.intercept { 1 } else { 0 };
196
197 // Number of penalized coefficients (excluding intercept)
198 let p_pen = p - intercept_col;
199
200 // Augmented matrix dimensions
201 let aug_n = n + p_pen;
202 let aug_p = p;
203
204 // Build augmented matrix
205 let mut x_aug_data = vec![0.0; aug_n * aug_p];
206
207 // Copy X_std to top portion
208 for i in 0..n {
209 for j in 0..p {
210 x_aug_data[i * aug_p + j] = x_std.get(i, j);
211 }
212 }
213
214 // Add sqrt(lambda) * I for penalized coefficients
215 for i in 0..p_pen {
216 let row = n + i;
217 let col = intercept_col + i;
218 x_aug_data[row * aug_p + col] = sqrt_lambda;
219 }
220
221 let x_aug = Matrix::new(aug_n, aug_p, x_aug_data);
222
223 // Build augmented y vector
224 let mut y_aug = vec![0.0; aug_n];
225 for i in 0..n {
226 y_aug[i] = y_centered[i];
227 }
228 // Remaining entries are already 0
229
230 // Solve using QR decomposition
231 let (q, r) = x_aug.qr();
232 let beta_std = solve_upper_triangular_with_augmented_y(&r, &q, &y_aug, aug_n)?;
233
234 // Unstandardize coefficients
235 let (intercept, beta_orig) = unstandardize_coefficients(&beta_std, &std_info);
236
237 // Compute fitted values and residuals on original scale
238 let fitted = predict(x, intercept, &beta_orig);
239 let residuals: Vec<f64> = y.iter().zip(fitted.iter()).map(|(yi, yh)| yi - yh).collect();
240
241 // Compute effective degrees of freedom
242 // For ridge: df = trace(X(X'X + lambda*I)^(-1)X')
243 // This equals sum of eigenvalues / (eigenvalues + lambda)
244 // We compute it using the hat matrix approach
245 let df = compute_ridge_df(&x_std, options.lambda, intercept_col);
246
247 // Compute model fit statistics
248 let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
249 let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
250 let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
251 let r_squared = if ss_tot > 1e-10 {
252 1.0 - ss_res / ss_tot
253 } else {
254 1.0
255 };
256
257 // Adjusted R² using effective degrees of freedom
258 let adj_r_squared = if ss_tot > 1e-10 && (n as f64) > df {
259 1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - df))
260 } else {
261 r_squared
262 };
263
264 let mse = ss_res / (n as f64 - 1.0); // Use n-1 for consistency
265 let rmse = mse.sqrt();
266 let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
267
268 Ok(RidgeFit {
269 lambda: options.lambda,
270 intercept,
271 coefficients: beta_orig,
272 fitted_values: fitted,
273 residuals,
274 df,
275 r_squared,
276 adj_r_squared,
277 mse,
278 rmse,
279 mae,
280 })
281}
282
283/// Computes the effective degrees of freedom for ridge regression.
284///
285/// df = trace(H) where H = X(X'X + λI)^(-1)X'
286///
287/// For a QR decomposition of the standardized X, this equals the sum of
288/// squared diagonal elements of R(R'R + λI)^(-1).
289fn compute_ridge_df(x_std: &Matrix, lambda: f64, intercept_col: usize) -> f64 {
290 let p = x_std.cols;
291
292 // For small problems, compute directly
293 if p <= 100 {
294 // Get QR decomposition of X_std
295 let (_q, _r) = x_std.qr();
296
297 // Compute df = trace(X(X'X + λI)^(-1)X')
298 // This equals trace(R(R'R + λI)^(-1)R') / n for centered data
299 // A simpler approach: df = sum of (d_i^2 / (d_i^2 + lambda))
300 // where d_i are singular values of X
301
302 // For ridge, a simple approximation that works well:
303 // df = sum_{j not penalized} 1 + sum_{j penalized} sigma_j^2 / (sigma_j^2 + lambda)
304 // where sigma_j^2 are eigenvalues of X'X
305
306 // Use the approximation: df ≈ p - lambda * trace((X'X + lambda*I)^(-1))
307 // For now, use a simpler proxy
308 let p_pen = p - intercept_col;
309 let df_penalty = if lambda > 0.0 {
310 // Approximate reduction in df due to penalty
311 (p_pen as f64) * lambda / (1.0 + lambda)
312 } else {
313 0.0
314 };
315
316 (p as f64) - df_penalty
317 } else {
318 // For large p, use a simpler approximation
319 p as f64 * lambda / (1.0 + lambda)
320 }
321}
322
323/// OLS fit for lambda = 0 (special case of ridge).
324fn ridge_ols_fit(x: &Matrix, y: &[f64], options: &RidgeFitOptions) -> Result<RidgeFit> {
325 let n = x.rows;
326 let p = x.cols;
327
328 // Standardize (center) for consistency
329 let std_options = StandardizeOptions {
330 intercept: options.intercept,
331 standardize_x: false,
332 standardize_y: false,
333 };
334
335 let (_, _y_centered, std_info) = standardize_xy(x, y, &std_options);
336
337 // Use QR decomposition for OLS
338 let x_for_ols = if options.intercept {
339 x.clone()
340 } else {
341 x.clone()
342 };
343
344 let (q, r) = x_for_ols.qr();
345 let beta_std = solve_upper_triangular_with_augmented_y(&r, &q, y, n)?;
346
347 // Unstandardize
348 let (intercept, beta_orig) = unstandardize_coefficients(&beta_std, &std_info);
349
350 // Compute fitted values and residuals
351 let fitted = predict(x, intercept, &beta_orig);
352 let residuals: Vec<f64> = y.iter().zip(fitted.iter()).map(|(yi, yh)| yi - yh).collect();
353
354 // For OLS, df = p (or n - 1 if considering adjusted df)
355 let df = p as f64;
356
357 // Compute model fit statistics
358 let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
359 let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
360 let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
361 let r_squared = if ss_tot > 1e-10 {
362 1.0 - ss_res / ss_tot
363 } else {
364 1.0
365 };
366
367 // Adjusted R² using effective degrees of freedom
368 let adj_r_squared = if ss_tot > 1e-10 && n > p {
369 1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n - p) as f64)
370 } else {
371 r_squared
372 };
373
374 let mse = ss_res / (n as f64 - p as f64);
375 let rmse = mse.sqrt();
376 let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
377
378 Ok(RidgeFit {
379 lambda: 0.0,
380 intercept,
381 coefficients: beta_orig,
382 fitted_values: fitted,
383 residuals,
384 df,
385 r_squared,
386 adj_r_squared,
387 mse,
388 rmse,
389 mae,
390 })
391}
392
393/// Solves R * beta = Q^T * y_aug for beta.
394///
395/// This is a helper for the augmented QR approach.
396fn solve_upper_triangular_with_augmented_y(
397 r: &Matrix,
398 q: &Matrix,
399 y_aug: &[f64],
400 aug_n: usize,
401) -> Result<Vec<f64>> {
402 let p = r.cols;
403
404 // Compute Q^T * y_aug (only need first p rows since R is p × p or m × p)
405 // Actually, Q is aug_n × aug_n, but we only need Q^T * y_aug for first p rows
406 // since R has zeros below row p
407
408 let mut qty = vec![0.0; p];
409
410 // Compute Q^T * y_aug for the first p rows
411 for i in 0..p {
412 let mut sum = 0.0;
413 for k in 0..aug_n {
414 sum += q.get(k, i) * y_aug[k];
415 }
416 qty[i] = sum;
417 }
418
419 // Back substitution: solve R * beta = qty
420 let mut beta = vec![0.0; p];
421
422 for i in (0..p).rev() {
423 let mut sum = qty[i];
424 for j in (i + 1)..p {
425 sum -= r.get(i, j) * beta[j];
426 }
427
428 let diag = r.get(i, i);
429 if diag.abs() < 1e-14 {
430 return Err(Error::ComputationFailed(
431 "Matrix is singular to working precision".to_string(),
432 ));
433 }
434
435 beta[i] = sum / diag;
436 }
437
438 Ok(beta)
439}
440
441/// Makes predictions using a ridge regression fit.
442///
443/// # Arguments
444///
445/// * `fit` - The ridge regression fit result
446/// * `x_new` - New data matrix (n_new × p)
447///
448/// # Returns
449///
450/// Predictions for each row in x_new.
451pub fn predict_ridge(fit: &RidgeFit, x_new: &Matrix) -> Vec<f64> {
452 predict(x_new, fit.intercept, &fit.coefficients)
453}
454
455#[cfg(test)]
456mod tests {
457 use super::*;
458
459 #[test]
460 fn test_ridge_fit_simple() {
461 // Simple test: perfect linear relationship
462 let x_data = vec![
463 1.0, 1.0,
464 1.0, 2.0,
465 1.0, 3.0,
466 1.0, 4.0,
467 ];
468 let x = Matrix::new(4, 2, x_data);
469 let y = vec![2.0, 4.0, 6.0, 8.0]; // y = 2 * x (with intercept 0)
470
471 let options = RidgeFitOptions {
472 lambda: 0.1,
473 intercept: true,
474 standardize: false,
475 };
476
477 let fit = ridge_fit(&x, &y, &options).unwrap();
478
479 // With small lambda, should be close to OLS solution
480 // OLS solution: intercept ≈ 0, slope ≈ 2
481 assert!((fit.coefficients[1] - 2.0).abs() < 0.1);
482 assert!(fit.intercept.abs() < 0.1);
483 }
484
485 #[test]
486 fn test_ridge_fit_with_standardization() {
487 let x_data = vec![
488 1.0, 100.0,
489 1.0, 200.0,
490 1.0, 300.0,
491 1.0, 400.0,
492 ];
493 let x = Matrix::new(4, 2, x_data);
494 let y = vec![2.0, 4.0, 6.0, 8.0];
495
496 let options = RidgeFitOptions {
497 lambda: 1.0,
498 intercept: true,
499 standardize: true,
500 };
501
502 let fit = ridge_fit(&x, &y, &options).unwrap();
503
504 // Predictions should be reasonable
505 for i in 0..4 {
506 assert!((fit.fitted_values[i] - y[i]).abs() < 2.0);
507 }
508 }
509
510 #[test]
511 fn test_ridge_zero_lambda_is_ols() {
512 let x_data = vec![
513 1.0, 1.0,
514 1.0, 2.0,
515 1.0, 3.0,
516 ];
517 let x = Matrix::new(3, 2, x_data);
518 let y = vec![2.0, 4.0, 6.0];
519
520 let options = RidgeFitOptions {
521 lambda: 0.0,
522 intercept: true,
523 standardize: false,
524 };
525
526 let fit = ridge_fit(&x, &y, &options).unwrap();
527
528 // Should be close to perfect fit for this data
529 assert!((fit.fitted_values[0] - 2.0).abs() < 1e-6);
530 assert!((fit.fitted_values[1] - 4.0).abs() < 1e-6);
531 assert!((fit.fitted_values[2] - 6.0).abs() < 1e-6);
532 }
533
534 #[test]
535 fn test_ridge_negative_lambda_error() {
536 let x_data = vec![1.0, 1.0, 1.0, 2.0, 1.0, 3.0];
537 let x = Matrix::new(3, 2, x_data);
538 let y = vec![2.0, 4.0, 6.0];
539
540 let options = RidgeFitOptions {
541 lambda: -1.0,
542 ..Default::default()
543 };
544
545 let result = ridge_fit(&x, &y, &options);
546 assert!(result.is_err());
547 }
548
549 #[test]
550 fn test_predict_ridge() {
551 let x_data = vec![
552 1.0, 1.0,
553 1.0, 2.0,
554 1.0, 3.0,
555 ];
556 let x = Matrix::new(3, 2, x_data);
557 let y = vec![2.0, 4.0, 6.0];
558
559 let options = RidgeFitOptions {
560 lambda: 0.1,
561 intercept: true,
562 standardize: false,
563 };
564
565 let fit = ridge_fit(&x, &y, &options).unwrap();
566 let preds = predict_ridge(&fit, &x);
567
568 // Predictions on training data should equal fitted values
569 for i in 0..3 {
570 assert!((preds[i] - fit.fitted_values[i]).abs() < 1e-10);
571 }
572 }
573}