linreg_core/regularized/lasso.rs
1//! Lasso regression (L1-regularized linear regression).
2//!
3//! This module provides lasso regression implementation using cyclical coordinate
4//! descent with soft-thresholding, matching glmnet's approach.
5//!
6//! # Lasso Regression Objective
7//!
8//! Lasso regression solves:
9//!
10//! ```text
11//! minimize over (β₀, β):
12//!
13//! (1/(2n)) * Σᵢ (yᵢ - β₀ - xᵢᵀβ)² + λ * ||β||₁
14//! ```
15//!
16//! The intercept `β₀` is **not penalized**.
17//!
18//! # Solution Method
19//!
20//! Uses cyclical coordinate descent with soft-thresholding:
21//!
22//! 1. For standardized X, each coordinate update has a closed form
23//! 2. Soft-thresholding operator: S(z, γ) = sign(z) * max(|z| - γ, 0)
24//! 3. Warm starts along lambda path for efficiency
25
26use crate::error::{Error, Result};
27use crate::linalg::Matrix;
28use crate::regularized::preprocess::{
29 predict, standardize_xy, unstandardize_coefficients, StandardizeOptions,
30};
31
32#[cfg(feature = "wasm")]
33use serde::Serialize;
34
35/// Soft-thresholding operator: S(z, γ) = sign(z) * max(|z| - γ, 0).
36///
37/// # Arguments
38///
39/// * `z` - Input value
40/// * `gamma` - Threshold value (must be >= 0)
41///
42/// # Returns
43///
44/// The soft-thresholded value.
45///
46/// # Formula
47///
48/// ```text
49/// S(z, γ) = {
50/// z - γ if z > 0 and |z| > γ
51/// z + γ if z < 0 and |z| > γ
52/// 0 if |z| <= γ
53/// }
54/// ```
55pub fn soft_threshold(z: f64, gamma: f64) -> f64 {
56 if gamma < 0.0 {
57 panic!("Soft threshold gamma must be non-negative");
58 }
59 if z > gamma {
60 z - gamma
61 } else if z < -gamma {
62 z + gamma
63 } else {
64 0.0
65 }
66}
67
68/// Options for lasso regression fitting.
69///
70/// # Fields
71///
72/// * `lambda` - Regularization strength (single value)
73/// * `intercept` - Whether to include an intercept term (default: true)
74/// * `standardize` - Whether to standardize predictors (default: true)
75/// * `max_iter` - Maximum iterations per lambda (default: 1000)
76/// * `tol` - Convergence tolerance (default: 1e-7)
77/// * `penalty_factor` - Optional per-feature penalty factors
78#[derive(Clone, Debug)]
79pub struct LassoFitOptions {
80 /// Regularization strength (must be >= 0)
81 pub lambda: f64,
82 /// Whether to include an intercept
83 pub intercept: bool,
84 /// Whether to standardize predictors
85 pub standardize: bool,
86 /// Maximum coordinate descent iterations
87 pub max_iter: usize,
88 /// Convergence tolerance on coefficient changes
89 pub tol: f64,
90 /// Per-feature penalty factors (optional)
91 pub penalty_factor: Option<Vec<f64>>,
92}
93
94impl Default for LassoFitOptions {
95 fn default() -> Self {
96 LassoFitOptions {
97 lambda: 1.0,
98 intercept: true,
99 standardize: true,
100 max_iter: 1000,
101 tol: 1e-7,
102 penalty_factor: None,
103 }
104 }
105}
106
107/// Result of a lasso regression fit.
108///
109/// # Fields
110///
111/// * `lambda` - The lambda value used for fitting
112/// * `intercept` - Intercept coefficient (on original scale)
113/// * `coefficients` - Slope coefficients (on original scale, may contain zeros)
114/// * `fitted_values` - In-sample predictions
115/// * `residuals` - Residuals (y - fitted_values)
116/// * `n_nonzero` - Number of non-zero coefficients (excluding intercept)
117/// * `iterations` - Number of coordinate descent iterations
118/// * `converged` - Whether the algorithm converged
119/// * `r_squared` - R² (coefficient of determination)
120/// * `adj_r_squared` - Adjusted R² (using effective df based on n_nonzero)
121/// * `mse` - Mean squared error
122/// * `rmse` - Root mean squared error
123/// * `mae` - Mean absolute error
124#[derive(Clone, Debug)]
125#[cfg_attr(feature = "wasm", derive(Serialize))]
126pub struct LassoFit {
127 /// Lambda value used for fitting
128 pub lambda: f64,
129 /// Intercept on original scale
130 pub intercept: f64,
131 /// Slope coefficients on original scale
132 pub coefficients: Vec<f64>,
133 /// Fitted values
134 pub fitted_values: Vec<f64>,
135 /// Residuals
136 pub residuals: Vec<f64>,
137 /// Number of non-zero coefficients
138 pub n_nonzero: usize,
139 /// Number of iterations performed
140 pub iterations: usize,
141 /// Whether convergence was achieved
142 pub converged: bool,
143 /// R² (coefficient of determination)
144 pub r_squared: f64,
145 /// Adjusted R² (penalized for effective number of parameters)
146 pub adj_r_squared: f64,
147 /// Mean squared error
148 pub mse: f64,
149 /// Root mean squared error
150 pub rmse: f64,
151 /// Mean absolute error
152 pub mae: f64,
153}
154
155/// Fits lasso regression for a single lambda value.
156///
157/// # Arguments
158///
159/// * `x` - Design matrix (n × p). Should include intercept column if `intercept=true`.
160/// * `y` - Response vector (n elements)
161/// * `options` - Lasso fitting options
162///
163/// # Returns
164///
165/// A [`LassoFit`] containing the fit results.
166///
167/// # Errors
168///
169/// Returns an error if:
170/// - `lambda < 0`
171/// - Dimensions don't match
172/// - Maximum iterations reached without convergence
173///
174/// # Algorithm
175///
176/// Uses cyclical coordinate descent:
177/// 1. Standardize X and center y (if requested)
178/// 2. Initialize coefficients (zeros or warm start)
179/// 3. For each feature j:
180/// - Compute partial residual: r = y - X_{-j} * beta_{-j}
181/// - Compute correlation: rho_j = X_j^T * r / n
182/// - Apply soft-thresholding: beta_j = S(rho_j, lambda) / (1 + 0)
183/// - (For lasso with standardized X, denominator is 1)
184/// 4. Check for convergence
185/// 5. Unstandardize coefficients
186///
187/// # Example
188///
189/// ```rust,no_run
190/// use linreg_core::linalg::Matrix;
191/// use linreg_core::regularized::lasso::{lasso_fit, LassoFitOptions};
192///
193/// let x = Matrix::new(3, 2, vec![
194/// 1.0, 2.0,
195/// 1.0, 3.0,
196/// 1.0, 4.0,
197/// ]);
198/// let y = vec![3.0, 5.0, 7.0];
199///
200/// let options = LassoFitOptions {
201/// lambda: 1.0,
202/// intercept: true,
203/// standardize: true,
204/// ..Default::default()
205/// };
206///
207/// let fit = lasso_fit(&x, &y, &options).unwrap();
208/// println!("Non-zero coefficients: {}", fit.n_nonzero);
209/// ```
210pub fn lasso_fit(x: &Matrix, y: &[f64], options: &LassoFitOptions) -> Result<LassoFit> {
211 if options.lambda < 0.0 {
212 return Err(Error::InvalidInput(
213 "Lambda must be non-negative for lasso regression".to_string(),
214 ));
215 }
216
217 let n = x.rows;
218 let p = x.cols;
219
220 if y.len() != n {
221 return Err(Error::DimensionMismatch(
222 format!("Length of y ({}) must match number of rows in X ({})", y.len(), n)
223 ));
224 }
225
226 // Handle zero lambda: just do OLS
227 if options.lambda == 0.0 {
228 return lasso_ols_fit(x, y, options);
229 }
230
231 // Standardize X and center y
232 let std_options = StandardizeOptions {
233 intercept: options.intercept,
234 standardize_x: options.standardize,
235 standardize_y: false,
236 };
237
238 let (x_std, y_centered, std_info) = standardize_xy(x, y, &std_options);
239
240 // Initialize coefficients to zero
241 let mut beta_std = vec![0.0; p];
242
243 // Determine which columns are penalized
244 let start_col = if options.intercept { 1 } else { 0 };
245
246 // Run coordinate descent
247 let (iterations, converged) = coordinate_descent(
248 &x_std,
249 &y_centered,
250 &mut beta_std,
251 options.lambda,
252 start_col,
253 options.max_iter,
254 options.tol,
255 options.penalty_factor.as_deref(),
256 )?;
257
258 // Unstandardize coefficients
259 let (intercept, beta_orig) = unstandardize_coefficients(&beta_std, &std_info);
260
261 // Count non-zero coefficients
262 let n_nonzero = beta_orig.iter().skip(start_col).filter(|&&b| b.abs() > 0.0).count();
263
264 // Compute fitted values and residuals
265 let fitted = predict(x, intercept, &beta_orig);
266 let residuals: Vec<f64> = y.iter().zip(fitted.iter()).map(|(yi, yh)| yi - yh).collect();
267
268 // Compute model fit statistics
269 let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
270 let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
271 let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
272 let r_squared = if ss_tot > 1e-10 {
273 1.0 - ss_res / ss_tot
274 } else {
275 1.0
276 };
277
278 // For lasso, effective df = (intercept) + n_nonzero
279 // Adjusted R² uses effective degrees of freedom
280 let eff_df = 1.0 + n_nonzero as f64; // intercept + non-zero coefficients
281 let adj_r_squared = if ss_tot > 1e-10 && n > eff_df as usize {
282 1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - eff_df))
283 } else {
284 r_squared
285 };
286
287 let mse = ss_res / (n as f64 - eff_df).max(1.0);
288 let rmse = mse.sqrt();
289 let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
290
291 Ok(LassoFit {
292 lambda: options.lambda,
293 intercept,
294 coefficients: beta_orig,
295 fitted_values: fitted,
296 residuals,
297 n_nonzero,
298 iterations,
299 converged,
300 r_squared,
301 adj_r_squared,
302 mse,
303 rmse,
304 mae,
305 })
306}
307
308/// Coordinate descent for lasso.
309///
310/// # Arguments
311///
312/// * `x` - Standardized design matrix
313/// * `y` - Centered response
314/// * `beta` - Coefficient vector (modified in place)
315/// * `lambda` - Regularization strength
316/// * `start_col` - First penalized column index
317/// * `max_iter` - Maximum iterations
318/// * `tol` - Convergence tolerance
319/// * `penalty_factor` - Optional per-feature penalties
320///
321/// # Returns
322///
323/// A tuple `(iterations, converged)` indicating the number of iterations
324/// and whether convergence was achieved.
325fn coordinate_descent(
326 x: &Matrix,
327 y: &[f64],
328 beta: &mut [f64],
329 lambda: f64,
330 start_col: usize,
331 max_iter: usize,
332 tol: f64,
333 penalty_factor: Option<&[f64]>,
334) -> Result<(usize, bool)> {
335 let n = x.rows;
336 let p = x.cols;
337
338 let mut residuals: Vec<f64> = y.to_vec();
339 let mut converged = false;
340
341 // Initialize with current beta values
342 for iter in 0..max_iter {
343 let _beta_old = beta.to_vec();
344 let mut max_change: f64 = 0.0;
345
346 // Update each coordinate
347 for j in start_col..p {
348 // Skip if penalty factor is infinite (always excluded)
349 if let Some(pf) = penalty_factor {
350 if j < pf.len() && pf[j] == f64::INFINITY {
351 beta[j] = 0.0;
352 continue;
353 }
354 }
355
356 // Compute rho_j = x_j^T * r / n (where r includes x_j * beta_j)
357 // Actually: r = y - X*beta, and we want x_j^T * (r + x_j * beta_j) / n
358 // This equals x_j^T * (y - X_{-j} * beta_{-j}) / n
359
360 // First, remove the contribution of feature j from residuals
361 let old_beta_j = beta[j];
362 for i in 0..n {
363 residuals[i] += x.get(i, j) * old_beta_j;
364 }
365
366 // Compute rho_j = x_j^T * residuals / n
367 let mut rho_j = 0.0;
368 for i in 0..n {
369 rho_j += x.get(i, j) * residuals[i];
370 }
371 rho_j /= n as f64;
372
373 // Get penalty factor for this feature
374 let pf = penalty_factor
375 .and_then(|pf| pf.get(j))
376 .copied()
377 .unwrap_or(1.0);
378
379 // Apply soft-thresholding
380 // For standardized X, denominator is 1
381 let threshold = lambda * pf;
382 let new_beta_j = soft_threshold(rho_j, threshold);
383
384 // Update residuals with new coefficient
385 for i in 0..n {
386 residuals[i] -= x.get(i, j) * new_beta_j;
387 }
388
389 beta[j] = new_beta_j;
390
391 // Track maximum change
392 let change = (new_beta_j - old_beta_j).abs();
393 max_change = max_change.max(change);
394 }
395
396 // Check convergence
397 if max_change < tol {
398 converged = true;
399 return Ok((iter + 1, converged));
400 }
401 }
402
403 Ok((max_iter, converged))
404}
405
406/// OLS fit for lambda = 0 (special case of lasso).
407fn lasso_ols_fit(x: &Matrix, y: &[f64], options: &LassoFitOptions) -> Result<LassoFit> {
408 let std_options = StandardizeOptions {
409 intercept: options.intercept,
410 standardize_x: false,
411 standardize_y: false,
412 };
413
414 let (_, _, std_info) = standardize_xy(x, y, &std_options);
415
416 // Use QR decomposition for OLS
417 let (q, r) = x.qr();
418
419 // Solve R * beta = Q^T * y
420 let n = x.rows;
421 let p = x.cols;
422 let mut qty = vec![0.0; p];
423
424 for i in 0..p {
425 for k in 0..n {
426 qty[i] += q.get(k, i) * y[k];
427 }
428 }
429
430 let mut beta = vec![0.0; p];
431 for i in (0..p).rev() {
432 let mut sum = qty[i];
433 for j in (i + 1)..p {
434 sum -= r.get(i, j) * beta[j];
435 }
436 beta[i] = sum / r.get(i, i);
437 }
438
439 // Unstandardize
440 let (intercept, beta_orig) = unstandardize_coefficients(&beta, &std_info);
441
442 // Compute fitted values and residuals
443 let fitted = predict(x, intercept, &beta_orig);
444 let residuals: Vec<f64> = y.iter().zip(fitted.iter()).map(|(yi, yh)| yi - yh).collect();
445
446 // Count non-zero coefficients
447 let n_nonzero = beta_orig.iter().filter(|&&b| b.abs() > 0.0).count();
448
449 // Compute model fit statistics
450 let y_mean: f64 = y.iter().sum::<f64>() / n as f64;
451 let ss_tot: f64 = y.iter().map(|yi| (yi - y_mean).powi(2)).sum();
452 let ss_res: f64 = residuals.iter().map(|r| r.powi(2)).sum();
453 let r_squared = if ss_tot > 1e-10 {
454 1.0 - ss_res / ss_tot
455 } else {
456 1.0
457 };
458
459 // Adjusted R²
460 let eff_df = n_nonzero as f64;
461 let adj_r_squared = if ss_tot > 1e-10 && n > eff_df as usize {
462 1.0 - (1.0 - r_squared) * ((n - 1) as f64 / (n as f64 - eff_df))
463 } else {
464 r_squared
465 };
466
467 let mse = ss_res / (n as f64 - p as f64);
468 let rmse = mse.sqrt();
469 let mae: f64 = residuals.iter().map(|r| r.abs()).sum::<f64>() / n as f64;
470
471 Ok(LassoFit {
472 lambda: 0.0,
473 intercept,
474 coefficients: beta_orig,
475 fitted_values: fitted,
476 residuals,
477 n_nonzero,
478 iterations: 1,
479 converged: true,
480 r_squared,
481 adj_r_squared,
482 mse,
483 rmse,
484 mae,
485 })
486}
487
488/// Makes predictions using a lasso regression fit.
489///
490/// # Arguments
491///
492/// * `fit` - The lasso regression fit result
493/// * `x_new` - New data matrix (n_new × p)
494///
495/// # Returns
496///
497/// Predictions for each row in x_new.
498pub fn predict_lasso(fit: &LassoFit, x_new: &Matrix) -> Vec<f64> {
499 predict(x_new, fit.intercept, &fit.coefficients)
500}
501
502#[cfg(test)]
503mod tests {
504 use super::*;
505
506 #[test]
507 fn test_soft_threshold() {
508 assert_eq!(soft_threshold(5.0, 2.0), 3.0);
509 assert_eq!(soft_threshold(-5.0, 2.0), -3.0);
510 assert_eq!(soft_threshold(1.0, 2.0), 0.0);
511 assert_eq!(soft_threshold(-1.0, 2.0), 0.0);
512 assert_eq!(soft_threshold(2.0, 2.0), 0.0);
513 assert_eq!(soft_threshold(-2.0, 2.0), 0.0);
514 assert_eq!(soft_threshold(0.0, 0.0), 0.0);
515 }
516
517 #[test]
518 fn test_lasso_fit_simple() {
519 // Simple test: y = 2*x with perfect linear relationship
520 let x_data = vec![
521 1.0, 1.0,
522 1.0, 2.0,
523 1.0, 3.0,
524 1.0, 4.0,
525 ];
526 let x = Matrix::new(4, 2, x_data);
527 let y = vec![2.0, 4.0, 6.0, 8.0];
528
529 let options = LassoFitOptions {
530 lambda: 0.01, // Very small lambda for near-OLS solution
531 intercept: true,
532 standardize: true, // Standardize for better convergence
533 ..Default::default()
534 };
535
536 let fit = lasso_fit(&x, &y, &options).unwrap();
537
538 // With small lambda, should get a good fit
539 assert!(fit.converged);
540 assert!(fit.n_nonzero > 0);
541
542 // Predictions should be close to actual values
543 for i in 0..4 {
544 assert!((fit.fitted_values[i] - y[i]).abs() < 0.5);
545 }
546 }
547
548 #[test]
549 fn test_lasso_with_large_lambda() {
550 let x_data = vec![
551 1.0, 1.0,
552 1.0, 2.0,
553 1.0, 3.0,
554 ];
555 let x = Matrix::new(3, 2, x_data);
556 let y = vec![2.0, 4.0, 6.0];
557
558 let options = LassoFitOptions {
559 lambda: 100.0,
560 intercept: true,
561 standardize: false,
562 ..Default::default()
563 };
564
565 let fit = lasso_fit(&x, &y, &options).unwrap();
566
567 // With large lambda, all coefficients should be zero
568 // Only intercept should be non-zero (equal to mean of y)
569 assert_eq!(fit.n_nonzero, 0);
570 assert!((fit.coefficients[1]).abs() < 1e-10);
571 }
572
573 #[test]
574 fn test_lasso_zero_lambda_is_ols() {
575 let x_data = vec![
576 1.0, 1.0,
577 1.0, 2.0,
578 1.0, 3.0,
579 ];
580 let x = Matrix::new(3, 2, x_data);
581 let y = vec![2.0, 4.0, 6.0];
582
583 let options = LassoFitOptions {
584 lambda: 0.0,
585 intercept: true,
586 standardize: false,
587 ..Default::default()
588 };
589
590 let fit = lasso_fit(&x, &y, &options).unwrap();
591
592 // Should be close to perfect fit
593 assert!((fit.fitted_values[0] - 2.0).abs() < 1e-6);
594 assert!((fit.fitted_values[1] - 4.0).abs() < 1e-6);
595 assert!((fit.fitted_values[2] - 6.0).abs() < 1e-6);
596 }
597
598 #[test]
599 fn test_predict_lasso() {
600 let x_data = vec![
601 1.0, 1.0,
602 1.0, 2.0,
603 1.0, 3.0,
604 ];
605 let x = Matrix::new(3, 2, x_data);
606 let y = vec![2.0, 4.0, 6.0];
607
608 let options = LassoFitOptions {
609 lambda: 0.1,
610 intercept: true,
611 standardize: false,
612 ..Default::default()
613 };
614
615 let fit = lasso_fit(&x, &y, &options).unwrap();
616 let preds = predict_lasso(&fit, &x);
617
618 // Predictions on training data should equal fitted values
619 for i in 0..3 {
620 assert!((preds[i] - fit.fitted_values[i]).abs() < 1e-10);
621 }
622 }
623}