Expand description
Linear regression
linreg
calculates linear regressions for two dimensional measurements, also known as
simple linear regression.
Base for all calculations of linear regression is the simple model found in https://en.wikipedia.org/wiki/Ordinary_least_squares#Simple_linear_regression_model.
§Example use
use linreg::{linear_regression, linear_regression_of};
// Example 1: x and y values stored in two different vectors
let xs: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0, 5.0];
let ys: Vec<f64> = vec![2.0, 4.0, 5.0, 4.0, 5.0];
assert_eq!(Ok((0.6, 2.2)), linear_regression(&xs, &ys));
// Example 2: x and y values stored as tuples
let tuples: Vec<(f32, f32)> = vec![(1.0, 2.0),
(2.0, 4.0),
(3.0, 5.0),
(4.0, 4.0),
(5.0, 5.0)];
assert_eq!(Ok((0.6, 2.2)), linear_regression_of(&tuples));
// Example 3: directly operating on integer (converted to float as required)
let xs: Vec<u8> = vec![1, 2, 3, 4, 5];
let ys: Vec<u8> = vec![2, 4, 5, 4, 5];
assert_eq!(Ok((0.6, 2.2)), linear_regression(&xs, &ys));
Enums§
- Error
- The kinds of errors that can occur when calculating a linear regression.
Functions§
- lin_reg
- Calculates a linear regression with a known mean.
- lin_
reg_ imprecise - Single-pass simple linear regression.
- linear_
regression - Two-pass simple linear regression from slices.
- linear_
regression_ of - Two-pass linear regression from tuples.