1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

use crate::*;

/// A cursor is a position within a linked vector. It can be used to traverse
/// the list in either direction, and to access the element at the current
/// position.
/// 
pub trait CursorBase<T> {
    /// Returns a reference to the element at the cursor's current position.
    /// 
    fn get(&self) -> Option<&T>;

    /// Returns the handle of the element at the cursor's current position.
    /// 
    fn node(&self) -> HNode;

    /// Moves the cursor to the specified handle. Returns true if the cursor
    /// was moved, false if the handle was invalid.
    /// 
    fn move_to(&mut self, handle: HNode) -> bool;

    /// Moves the cursor to the next element. Returns the handle of the next
    /// element if the cursor was moved, None if the cursor was already at the
    /// end of the list.
    /// 
    fn move_next(&mut self) -> Option<HNode>;

    /// Moves the cursor to the previous element. Returns the handle of the
    /// previous element if the cursor was moved, None if the cursor was
    /// already at the start of the list.
    /// 
    fn move_prev(&mut self) -> Option<HNode>;

    /// Moves the cursor to the end of the list. Returns the handle of the
    /// last element if the cursor was moved, None if the list is empty.
    /// 
    fn move_to_back(&mut self) -> Option<HNode>;

    /// Moves the cursor to the start of the list. Returns the handle of the
    /// first element if the cursor was moved, None if the list is empty.
    /// 
    fn move_to_front(&mut self) -> Option<HNode>;

    /// Moves the cursor to the start of the list. Returns the handle of the
    /// first element if the cursor was moved, None if the list is empty.
    /// 
    #[deprecated(since = "1.1.0", note = "Use move_to_front() instead.")]
    fn move_to_start(&mut self) -> Option<HNode>;

    /// Moves the cursor to the end of the list. Returns the handle of the
    /// last element if the cursor was moved, None if the list is empty.
    /// 
    #[deprecated(since = "1.1.0", note = "Use move_to_back() instead.")]
    fn move_to_end(&mut self) -> Option<HNode>;

    /// Moves the cursor forward by the specified number of elements. Returns
    /// the handle of the element at the new position if the cursor was moved,
    /// Err(handle) if the cursor was already at the end of the list.
    /// 
    fn forward(&mut self, n: usize) -> Result<HNode, HNode>;

    /// Moves the cursor backward by the specified number of elements. Returns
    /// the handle of the element at the new position if the cursor was moved,
    /// Err(handle) if the cursor was already at the start of the list.
    /// 
    fn backward(&mut self, n: usize) -> Result<HNode, HNode>;
}

/// A cursor which can only read the elements of the list.
/// 
pub struct Cursor<'a, T> {
    lvec   : &'a LinkedVector<T>,
    handle : HNode,
}

impl<'a, T> Cursor<'a, T> {
    pub(crate) fn new(lvec   : &'a LinkedVector<T>, 
                      handle : HNode) 
        -> Self 
    {
        lvec.get(handle).expect("Cursor::new() called with invalid handle.");
        Self {
            lvec,
            handle,
        }
    }
}
impl<'a, T> CursorBase<T> for Cursor<'a, T> {
    fn get(&self) -> Option<&T> {
        self.lvec.get(self.handle)
    }

    fn node(&self) -> HNode {
        self.handle
    }

    fn move_to(&mut self, handle: HNode) -> bool {
        if self.lvec.get(handle).is_some() {
            self.handle = handle;
            true
        } else {
            false
        }
    }

    fn move_next(&mut self) -> Option<HNode> {
        self.lvec.next_node(self.handle).map(|hnext| {
            self.handle = hnext;
            hnext
        })
    }

    fn move_prev(&mut self) -> Option<HNode> {
        self.lvec.prev_node(self.handle).map(|hprev| {
            self.handle = hprev;
            hprev
        })
    }

    fn move_to_front(&mut self) -> Option<HNode> {
        self.lvec.front_node().map(|hstart| {
            self.handle = hstart;
            hstart
        })
    }

    fn move_to_back(&mut self) -> Option<HNode> {
        self.lvec.back_node().map(|hend| {
            self.handle = hend;
            hend
        })
    }

    fn move_to_start(&mut self) -> Option<HNode> {
        self.move_to_front()
    }

    fn move_to_end(&mut self) -> Option<HNode> {
        self.move_to_back()
    }
    fn forward(&mut self, n: usize) ->Result<HNode, HNode> {
        for _ in 0..n {
            if self.move_next().is_none() {
                return Err(self.handle);
            }
        }
        Ok(self.handle)
    }
    fn backward(&mut self, n: usize) -> Result<HNode, HNode> {
        for _ in 0..n {
            if self.move_prev().is_none() {
                return Err(self.handle);
            }
        }
        Ok(self.handle)
    }
}

/// A cursor which can read and write the elements of the list.
/// 
pub struct CursorMut<'a, T> {
    lvec   : &'a mut LinkedVector<T>,
    handle : HNode,
}

impl<'a, T> CursorMut<'a, T> {

    pub(crate) fn new(lvec   : &'a mut LinkedVector<T>, 
                      handle : HNode) 
        -> Self 
    {
        lvec.get(handle)
            .expect("CursorMut::new() called with invalid handle.");
        Self {
            lvec,
            handle,
        }
    }
    /// Returns a mutable reference to the element at the cursor's current
    /// position.
    /// 
    pub fn get_mut(&mut self) -> Option<&mut T> {
        self.lvec.get_mut(self.handle)
    }

    /// Inserts a new element at the cursor's current position. The cursor
    /// will be moved to the new element. Returns the handle of the new
    /// element.
    /// 
    pub fn insert(&mut self, value: T) -> HNode {
        self.handle = self.lvec.insert(self.handle, value);
        self.handle
    }

    /// Inserts a new element after the cursor's current position. The cursor
    /// will still be at the same position. Returns the handle of the new
    /// element.
    /// 
    pub fn insert_after(&mut self, value: T) -> HNode {
        self.lvec.insert_after(self.handle, value)
    }

    /// Removes the element at the current position and returns its value. The 
    /// cursor will be moved to the next element if not at the end of the 
    /// vector, otherwise it moves to the new end. If there was only one item
    /// in the vector, the cursor's position is set to `BAD_HANDLE` and should
    /// no longer be used, or could cause invalid handle panics.
    /// 
    pub fn remove(&mut self) -> Option<T> {
        let hrem = self.handle;
        if let Some(hnext) = self.lvec.next_node(self.handle) {
            self.handle = hnext;
        } else if let Some(hprev) = self.lvec.prev_node(self.handle) {
            self.handle = hprev;
        } else {
            self.handle = BAD_HANDLE;
        }
        self.lvec.remove(hrem)
    }
}

impl<'a, T> CursorBase<T> for CursorMut<'a, T> {
    fn get(&self) -> Option<&T> {
        self.lvec.get(self.handle)
    }

    fn node(&self) -> HNode {
        self.handle
    }

    fn move_to(&mut self, handle: HNode) -> bool {
        if self.lvec.get(handle).is_some() {
            self.handle = handle;
            true
        } else {
            false
        }
    }

    fn move_next(&mut self) -> Option<HNode> {
        self.lvec.next_node(self.handle).map(|hnext| {
            self.handle = hnext;
            hnext
        })
    }

    fn move_prev(&mut self) -> Option<HNode> {
        self.lvec.prev_node(self.handle).map(|hprev| {
            self.handle = hprev;
            hprev
        })
    }

    fn move_to_front(&mut self) -> Option<HNode> {
        self.lvec.front_node().map(|hstart| {
            self.handle = hstart;
            hstart
        })
    }

    fn move_to_back(&mut self) -> Option<HNode> {
        self.lvec.back_node().map(|hend| {
            self.handle = hend;
            hend
        })
    }

    fn move_to_start(&mut self) -> Option<HNode> {
        self.move_to_front()
    }

    fn move_to_end(&mut self) -> Option<HNode> {
        self.move_to_back()
    }

    fn forward(&mut self, n: usize) -> Result<HNode, HNode> {
        for _ in 0..n {
            if self.move_next().is_none() {
                return Err(self.handle);
            }
        }
        Ok(self.handle)
    }

    fn backward(&mut self, n: usize) -> Result<HNode, HNode> {
        for _ in 0..n {
            if self.move_prev().is_none() {
                return Err(self.handle);
            }
        }
        Ok(self.handle)
    }
}