1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//! Support Vector Regression
use linfa::{dataset::Dataset, traits::Fit, traits::Predict};
use ndarray::{ArrayBase, Data, Ix2};

use super::permutable_kernel::{Kernel, PermutableKernelRegression};
use super::solver_smo::SolverState;
use super::SolverParams;
use super::{Float, Svm, SvmParams};

/// Support Vector Regression with epsilon tolerance
///
/// This methods solves a binary SVC problem with a penalizing parameter epsilon between (0, inf). This defines the margin of tolerance, where no penalty is given to errors.
///
/// # Parameters
///
/// * `params` - Solver parameters (threshold etc.)
/// * `kernel` - the kernel matrix `Q`
/// * `targets` - the continuous targets `y_i`
/// * `c` - C value for all targets
/// * `p` - epsilon value for all targets
pub fn fit_epsilon<'a, A: Float>(
    params: SolverParams<A>,
    kernel: &'a Kernel<'a, A>,
    target: &'a [A],
    c: A,
    p: A,
) -> Svm<'a, A, A> {
    let mut linear_term = vec![A::zero(); 2 * target.len()];
    let mut targets = vec![true; 2 * target.len()];

    for i in 0..target.len() {
        linear_term[i] = p - target[i];
        targets[i] = true;

        linear_term[i + target.len()] = p + target[i];
        targets[i + target.len()] = false;
    }

    let kernel = PermutableKernelRegression::new(kernel);
    let solver = SolverState::new(
        vec![A::zero(); 2 * target.len()],
        linear_term,
        targets.to_vec(),
        kernel,
        vec![c; 2 * target.len()],
        params,
        false,
    );

    let mut res = solver.solve();

    for i in 0..target.len() {
        let tmp = res.alpha[i + target.len()];
        res.alpha[i] -= tmp;
    }
    res.alpha.truncate(target.len());

    res.with_phantom()
}

/// Support Vector Regression with nu parameter
///
/// This methods solves a binary SVC problem with parameter nu, defining how many support vectors should be used. This parameter should be in range (0, 1).
///
/// # Parameters
///
/// * `params` - Solver parameters (threshold etc.)
/// * `kernel` - the kernel matrix `Q`
/// * `targets` - the continuous targets `y_i`
/// * `c` - C value for all targets
/// * `nu` - nu value for all targets
pub fn fit_nu<'a, A: Float>(
    params: SolverParams<A>,
    kernel: &'a Kernel<'a, A>,
    target: &'a [A],
    c: A,
    nu: A,
) -> Svm<'a, A, A> {
    let mut alpha = vec![A::zero(); 2 * target.len()];
    let mut linear_term = vec![A::zero(); 2 * target.len()];
    let mut targets = vec![true; 2 * target.len()];

    let mut sum = c * nu * A::from(target.len()).unwrap() / A::from(2.0).unwrap();
    for i in 0..target.len() {
        alpha[i] = A::min(sum, c);
        alpha[i + target.len()] = A::min(sum, c);
        sum -= alpha[i];

        linear_term[i] = -target[i];
        targets[i] = true;

        linear_term[i + target.len()] = target[i];
        targets[i + target.len()] = false;
    }

    let kernel = PermutableKernelRegression::new(kernel);
    let solver = SolverState::new(
        alpha,
        linear_term,
        targets.to_vec(),
        kernel,
        vec![c; 2 * target.len()],
        params,
        false,
    );

    let mut res = solver.solve();

    for i in 0..target.len() {
        let tmp = res.alpha[i + target.len()];
        res.alpha[i] -= tmp;
    }
    res.alpha.truncate(target.len());

    res.with_phantom()
}

impl<'a, F: Float> Fit<'a, Kernel<'a, F>, Vec<F>> for SvmParams<F, F> {
    type Object = Svm<'a, F, F>;

    fn fit(&self, dataset: &'a Dataset<Kernel<'a, F>, Vec<F>>) -> Self::Object {
        match (self.c, self.nu) {
            (Some((c, eps)), _) => fit_epsilon(
                self.solver_params.clone(),
                &dataset.records,
                dataset.targets(),
                c,
                eps,
            ),
            (None, Some((nu, eps))) => fit_nu(
                self.solver_params.clone(),
                &dataset.records,
                dataset.targets(),
                nu,
                eps,
            ),
            _ => panic!("Set either C value or Nu value"),
        }
    }
}

impl<'a, F: Float> Fit<'a, Kernel<'a, F>, &Vec<F>> for SvmParams<F, F> {
    type Object = Svm<'a, F, F>;

    fn fit(&self, dataset: &'a Dataset<Kernel<'a, F>, &Vec<F>>) -> Self::Object {
        match (self.c, self.nu) {
            (Some((c, eps)), _) => fit_epsilon(
                self.solver_params.clone(),
                &dataset.records,
                dataset.targets(),
                c,
                eps,
            ),
            (None, Some((nu, eps))) => fit_nu(
                self.solver_params.clone(),
                &dataset.records,
                dataset.targets(),
                nu,
                eps,
            ),
            _ => panic!("Set either C value or Nu value"),
        }
    }
}

/// Predict a probability with a set of observations
impl<'a, D: Data<Elem = f64>> Predict<ArrayBase<D, Ix2>, Vec<f64>> for Svm<'a, f64, f64> {
    fn predict(&self, data: ArrayBase<D, Ix2>) -> Vec<f64> {
        data.outer_iter()
            .map(|data| {
                let val = match self.linear_decision {
                    Some(ref x) => x.dot(&data) - self.rho,
                    None => self.kernel.weighted_sum(&self.alpha, data.view()) - self.rho,
                };

                // this is safe because `F` is only implemented for `f32` and `f64`
                val
            })
            .collect()
    }
}
#[cfg(test)]
pub mod tests {
    use super::Svm;

    use linfa::dataset::Dataset;
    use linfa::metrics::Regression;
    use linfa::traits::{Fit, Predict, Transformer};
    use linfa_kernel::{Kernel, KernelMethod};
    use ndarray::{Array, Array1};

    #[test]
    fn test_linear_epsilon_regression() {
        let target = Array::linspace(0f64, 10., 100).to_vec();
        let mut sin_curve = Array::zeros((100, 1));
        for (i, val) in target.iter().enumerate() {
            sin_curve[(i, 0)] = *val;
        }

        let kernel = Kernel::params()
            .method(KernelMethod::Gaussian(50.))
            .transform(&sin_curve);

        let dataset = Dataset::new(kernel, &target);

        let model = Svm::params().nu_eps(2., 0.01).fit(&dataset);

        println!("{}", model);

        let predicted = Array1::from(model.predict(sin_curve.clone()));
        assert!(predicted.mean_squared_error(&target) < 1e-2);
    }

    #[test]
    fn test_linear_nu_regression() {
        let target = Array::linspace(0f64, 10., 100).to_vec();
        let mut sin_curve = Array::zeros((100, 1));
        for (i, val) in target.iter().enumerate() {
            sin_curve[(i, 0)] = *val;
        }

        let kernel = Kernel::params()
            .method(KernelMethod::Gaussian(50.))
            .transform(&sin_curve);

        let dataset = Dataset::new(kernel, &target);

        let model = Svm::params().nu_eps(2., 0.01).fit(&dataset);

        println!("{}", model);

        let predicted = Array1::from(model.predict(sin_curve.clone()));
        assert!(predicted.mean_squared_error(&target) < 1e-2);
    }
}