1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
//! Support Vector Machines //! //! Support Vector Machines are one major branch of machine learning models and offer classification or //! regression analysis of labeled datasets. They seek a discriminant, which seperates the data in //! an optimal way, e.g. have the fewest numbers of miss-classifications and maximizes the margin //! between positive and negative classes. A support vector //! contributes to the discriminant and is therefore important for the classification/regression //! task. The balance between the number of support vectors and model performance can be controlled //! with hyperparameters. //! //! More details can be found [here](https://en.wikipedia.org/wiki/Support_vector_machine) //! //! ## Available parameters in Classification and Regression //! //! For supervised classification tasks the C or Nu values are used to control this balance. In //! [fit_c](SVClassify/fn.fit_c) the //! C value controls the penalty given to missclassification and should be in the interval (0, inf). In //! [fit_nu](SVClassify/fn.fit_nu.html) the Nu value controls the number of support vectors and should be in the interval (0, 1]. //! //! For supervised classification with just one class of data a special classifier is available in //! [fit_one_class](SVClassify/fn.fit_one_class.html). It also accepts a Nu value. //! //! For support vector regression two flavors are available. With //! [fit_epsilon](SVRegress/fn.fit_epsilon.html) a regression task is learned while minimizing deviation //! larger than epsilon. In [fit_nu](SVRegress/fn.fit_nu.html) the parameter epsilon is replaced with Nu //! again and should be in the interval (0, 1] //! //! ## Kernel Methods //! Normally the resulting discriminant is linear, but with [Kernel Methods](https://en.wikipedia.org/wiki/Kernel_method) non-linear relations between the input features //! can be learned in order improve the performance of the model. //! //! For example to transform a dataset into a sparse RBF kernel with 10 non-zero distances you can //! use `linfa_kernel`: //! ```rust, ignore //! use linfa_kernel::Kernel; //! let dataset = ...; //! let kernel = Kernel::gaussian_sparse(&dataset, 10); //! ``` //! //! # The solver //! This implementation uses Sequential Minimal Optimization, a widely used optimization tool for //! convex problems. It selects in each optimization step two variables and updates the variables. //! In each step it performs: //! //! 1. Find a variable, which violates the KKT conditions for the optimization problem //! 2. Pick a second variables and crate a pair (a1, a2) //! 3. Optimize the pair (a1, a2) //! //! After a couple of iterations the solution may be optimal. //! //! # Example //! The wine quality data consists of 11 features, like "acid", "sugar", "sulfur dioxide", and //! groups the quality into worst 3 to best 8. These are unified to good 8-7 and bad 3-6 to get a //! binary classification task. //! //! With an RBF kernel and C-Support Vector Classification an //! accuracy of 0.988% is reached within 2911 iterations and 1248 support vectors. You can find the //! example [here](https://github.com/rust-ml/linfa/blob/master/linfa-svm/examples/winequality.rs). //! ```ignore //! Fit SVM classifier with #1439 training points //! Exited after 2911 iterations with obj = -248.51510322468084 and 1248 support vectors //! //! classes | bad | good //! bad | 1228 | 17 //! good | 0 | 194 //! //! accuracy 0.98818624, MCC 0.9523008 //! ``` use linfa::{dataset::Pr, Float}; use ndarray::Array1; use std::fmt; use std::marker::PhantomData; mod classification; mod permutable_kernel; mod regression; pub mod solver_smo; use permutable_kernel::Kernel; pub use solver_smo::SolverParams; pub struct SvmParams<F: Float, T> { c: Option<(F, F)>, nu: Option<(F, F)>, solver_params: SolverParams<F>, phantom: PhantomData<T>, } impl<F: Float, T> SvmParams<F, T> { pub fn eps(mut self, new_eps: F) -> Self { self.solver_params.eps = new_eps; self } pub fn shrinking(mut self, shrinking: bool) -> Self { self.solver_params.shrinking = shrinking; self } } impl<F: Float> SvmParams<F, Pr> { pub fn pos_neg_weights(mut self, c_pos: F, c_neg: F) -> Self { self.c = Some((c_pos, c_neg)); self.nu = None; self } pub fn nu_weight(mut self, nu: F) -> Self { self.nu = Some((nu, nu)); self.c = None; self } } impl<F: Float> SvmParams<F, F> { pub fn c_eps(mut self, c: F, eps: F) -> Self { self.c = Some((c, eps)); self.nu = None; self } pub fn nu_eps(mut self, nu: F, eps: F) -> Self { self.nu = Some((nu, eps)); self.c = None; self } } /// Support Vector Classification #[allow(non_snake_case)] pub mod SVClassify { pub use crate::classification::{fit_c, fit_nu, fit_one_class}; } /// Support Vector Regression #[allow(non_snake_case)] pub mod SVRegress { pub use crate::regression::{fit_epsilon, fit_nu}; } /// SMO can either exit because a threshold is reached or the iterations are maxed out #[derive(Debug)] pub enum ExitReason { ReachedThreshold, ReachedIterations, } /// The result of the SMO solver pub struct Svm<'a, A: Float, T> { pub alpha: Vec<A>, pub rho: A, r: Option<A>, exit_reason: ExitReason, iterations: usize, obj: A, kernel: &'a Kernel<'a, A>, linear_decision: Option<Array1<A>>, phantom: PhantomData<T>, } impl<'a, A: Float, T> Svm<'a, A, T> { pub fn params() -> SvmParams<A, T> { SvmParams { c: Some((A::one(), A::one())), nu: None, solver_params: SolverParams { eps: A::from(1e-7).unwrap(), shrinking: false, }, phantom: PhantomData, } } /// Returns the number of support vectors pub fn nsupport(&self) -> usize { self.alpha .iter() .filter(|x| x.abs() > A::from(1e-5).unwrap()) .count() } pub fn with_phantom<S>(self) -> Svm<'a, A, S> { Svm { alpha: self.alpha, rho: self.rho, r: self.r, exit_reason: self.exit_reason, obj: self.obj, iterations: self.iterations, kernel: self.kernel, linear_decision: self.linear_decision, phantom: PhantomData, } } } impl<'a, A: Float, T> fmt::Display for Svm<'a, A, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.exit_reason { ExitReason::ReachedThreshold => write!( f, "Exited after {} iterations with obj = {} and {} support vectors", self.iterations, self.obj, self.nsupport() ), ExitReason::ReachedIterations => write!( f, "Reached maximal iterations {} with obj = {} and {} support vectors", self.iterations, self.obj, self.nsupport() ), } } }