1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
//! Dimensionality reduction techniques //! //! This crate provides algorithms for dimensionality reduction in data analysis. They can be used //! to transform data from a high-dimensional space into a lower dimensional space such that some //! property of the data is retained. //! //! The following implementations are available: //! * Principal Component Analysis - projects data linearily and retains the largest variance //! * Diffusion Map - applies kernel methods and projects close regions together //! #[macro_use] extern crate ndarray; pub mod diffusion_map; pub mod error; pub mod pca; pub mod utils; pub use diffusion_map::DiffusionMap; pub use pca::Pca; pub use utils::to_gaussian_similarity;