1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use ndarray::{Array1, Array2, ArrayView2};
use ndarray_linalg::{
    eigh::EighInto, lapack::UPLO, lobpcg, lobpcg::LobpcgResult, Lapack, Scalar, TruncatedOrder,
};
use ndarray_rand::{rand_distr::Uniform, RandomExt};
use num_traits::NumCast;

use linfa::{traits::Transformer, Float};
use linfa_kernel::Kernel;

use super::hyperparameters::{DiffusionMapHyperParams, DiffusionMapHyperParamsBuilder};

pub struct DiffusionMap<F> {
    embedding: Array2<F>,
    eigvals: Array1<F>,
}

impl<'a, F: Float + Lapack> Transformer<&'a Kernel<ArrayView2<'a, F>>, DiffusionMap<F>>
    for DiffusionMapHyperParams
{
    fn transform(&self, kernel: &'a Kernel<ArrayView2<'a, F>>) -> DiffusionMap<F> {
        // compute spectral embedding with diffusion map
        let (embedding, eigvals) =
            compute_diffusion_map(kernel, self.steps(), 0.0, self.embedding_size(), None);

        DiffusionMap { embedding, eigvals }
    }
}

impl<F: Float + Lapack> DiffusionMap<F> {
    pub fn params(embedding_size: usize) -> DiffusionMapHyperParamsBuilder {
        DiffusionMapHyperParams::new(embedding_size)
    }
    /// Estimate the number of clusters in this embedding (very crude for now)
    pub fn estimate_clusters(&self) -> usize {
        let mean = self.eigvals.sum() / NumCast::from(self.eigvals.len()).unwrap();
        self.eigvals.iter().filter(|x| *x > &mean).count() + 1
    }

    /// Return a copy of the eigenvalues
    pub fn eigvals(&self) -> Array1<F> {
        self.eigvals.clone()
    }

    pub fn embedding(&self) -> Array2<F> {
        self.embedding.clone()
    }
}

fn compute_diffusion_map<'b, F: Float + Lapack>(
    kernel: &'b Kernel<ArrayView2<'b, F>>,
    steps: usize,
    alpha: f32,
    embedding_size: usize,
    guess: Option<Array2<F>>,
) -> (Array2<F>, Array1<F>) {
    assert!(embedding_size < kernel.size());

    let d = kernel.sum().mapv(|x| x.recip());

    let d2 = d.mapv(|x| x.powf(NumCast::from(0.5 + alpha).unwrap()));

    // use full eigenvalue decomposition for small problem sizes
    let (vals, mut vecs) = if kernel.size() < 5 * embedding_size + 1 {
        let mut matrix = kernel.dot(&Array2::from_diag(&d).view());
        matrix
            .gencolumns_mut()
            .into_iter()
            .zip(d.iter())
            .for_each(|(mut a, b)| a *= *b);

        let (vals, vecs) = matrix.eigh_into(UPLO::Lower).unwrap();
        let (vals, vecs) = (vals.slice_move(s![..; -1]), vecs.slice_move(s![.., ..; -1]));
        (
            vals.slice_move(s![1..=embedding_size])
                .mapv(Scalar::from_real),
            vecs.slice_move(s![.., 1..=embedding_size]),
        )
    } else {
        // calculate truncated eigenvalue decomposition
        let x = guess.unwrap_or_else(|| {
            Array2::random(
                (kernel.size(), embedding_size + 1),
                Uniform::new(0.0f64, 1.0),
            )
            .mapv(|x| NumCast::from(x).unwrap())
        });

        let result = lobpcg::lobpcg(
            |y| {
                let mut y = y.to_owned();
                y.genrows_mut()
                    .into_iter()
                    .zip(d2.iter())
                    .for_each(|(mut a, b)| a *= *b);
                let mut y = kernel.dot(&y.view());
                y.genrows_mut()
                    .into_iter()
                    .zip(d2.iter())
                    .for_each(|(mut a, b)| a *= *b);

                y
            },
            x,
            |_| {},
            None,
            1e-15,
            200,
            TruncatedOrder::Largest,
        );

        let (vals, vecs) = match result {
            LobpcgResult::Ok(vals, vecs, _) | LobpcgResult::Err(vals, vecs, _, _) => (vals, vecs),
            _ => panic!("Eigendecomposition failed!"),
        };

        // cut away first eigenvalue/eigenvector
        (vals.slice_move(s![1..]), vecs.slice_move(s![.., 1..]))
    };

    let d = d.mapv(|x| x.sqrt());

    for (mut col, val) in vecs.genrows_mut().into_iter().zip(d.iter()) {
        col *= *val;
    }

    let steps = NumCast::from(steps).unwrap();
    for (mut vec, val) in vecs.gencolumns_mut().into_iter().zip(vals.iter()) {
        vec *= val.powf(steps);
    }

    (vecs, vals)
}