1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use crate::errors::{PlsError, Result};
use crate::{utils, Float};
use linfa::dataset::{WithLapack, WithoutLapack};
use linfa::{dataset::Records, traits::Fit, traits::Transformer, DatasetBase};
use ndarray::{s, Array1, Array2, ArrayBase, Data, Ix2};
use ndarray_linalg::svd::*;
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde_crate")
)]
#[derive(Debug, Clone)]
pub struct PlsSvdParams {
n_components: usize,
scale: bool,
}
impl PlsSvdParams {
pub fn new(n_components: usize) -> PlsSvdParams {
PlsSvdParams {
n_components,
scale: true,
}
}
pub fn scale(mut self, scale: bool) -> Self {
self.scale = scale;
self
}
}
impl Default for PlsSvdParams {
fn default() -> Self {
Self::new(2)
}
}
#[allow(clippy::many_single_char_names)]
impl<F: Float, D: Data<Elem = F>> Fit<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>, PlsError>
for PlsSvdParams
{
type Object = PlsSvd<F>;
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
) -> Result<Self::Object> {
if dataset.nsamples() < 2 {
return Err(PlsError::NotEnoughSamplesError(
dataset.records().nsamples(),
));
}
let rank_upper_bound = dataset
.nsamples()
.min(dataset.nfeatures())
.min(dataset.targets().ncols());
if 1 > self.n_components || self.n_components > rank_upper_bound {
return Err(PlsError::BadComponentNumberError {
upperbound: rank_upper_bound,
actual: self.n_components,
});
}
let (x, y, x_mean, y_mean, x_std, y_std) = utils::center_scale_dataset(dataset, self.scale);
let c = x.t().dot(&y);
let (u, _, vt) = c.with_lapack().svd(true, true)?;
let u = u.unwrap().slice_move(s![.., ..self.n_components]);
let vt = vt.unwrap().slice_move(s![..self.n_components, ..]);
let (u, vt) = utils::svd_flip(u, vt);
let v = vt.reversed_axes();
let x_weights = u.without_lapack();
let y_weights = v.without_lapack();
Ok(PlsSvd {
x_mean,
x_std,
y_mean,
y_std,
x_weights,
y_weights,
})
}
}
pub struct PlsSvd<F: Float> {
x_mean: Array1<F>,
x_std: Array1<F>,
y_mean: Array1<F>,
y_std: Array1<F>,
x_weights: Array2<F>,
y_weights: Array2<F>,
}
impl<F: Float> PlsSvd<F> {
pub fn params(n_components: usize) -> PlsSvdParams {
PlsSvdParams {
n_components,
scale: true,
}
}
pub(crate) fn means(&self) -> (&Array1<F>, &Array1<F>) {
(&self.x_mean, &self.y_mean)
}
pub(crate) fn stds(&self) -> (&Array1<F>, &Array1<F>) {
(&self.x_std, &self.y_std)
}
pub fn weights(&self) -> (&Array2<F>, &Array2<F>) {
(&self.x_weights, &self.y_weights)
}
}
impl<F: Float, D: Data<Elem = F>>
Transformer<
DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
DatasetBase<Array2<F>, Array2<F>>,
> for PlsSvd<F>
{
fn transform(
&self,
dataset: DatasetBase<ArrayBase<D, Ix2>, ArrayBase<D, Ix2>>,
) -> DatasetBase<Array2<F>, Array2<F>> {
let (x_mean, y_mean) = &self.means();
let (x_std, y_std) = &self.stds();
let (x_weights, y_weights) = &self.weights();
let xr = (dataset.records() - *x_mean) / *x_std;
let x_scores = xr.dot(*x_weights);
let yr = (dataset.targets() - *y_mean) / *y_std;
let y_scores = yr.dot(*y_weights);
DatasetBase::new(x_scores, y_scores)
}
}
#[cfg(test)]
mod test {
use super::*;
use approx::assert_abs_diff_eq;
use linfa_datasets::linnerud;
use ndarray::array;
#[test]
fn test_svd() -> Result<()> {
let ds = linnerud();
let pls = PlsSvd::<f64>::params(3).fit(&ds)?;
let ds = pls.transform(ds);
let expected_x = array![
[-0.37144954, -0.0544441, -0.82290137],
[-1.34032497, 0.19638169, -0.71715313],
[-0.08234873, 0.58492788, 0.86557407],
[-0.35496515, -0.62863268, 0.74383396],
[0.46311708, -0.39856773, 0.39748814],
[-1.30584148, -0.20072641, -0.3591439],
[-0.86178968, -0.43791399, 0.2111225],
[-0.79728366, -0.3790222, -0.32195725],
[1.14229739, -0.93000533, 0.19761764],
[3.03443501, 2.81149299, 0.22224139],
[0.40921689, -0.84959246, 1.30923934],
[1.40508381, 0.53658054, -0.09910248],
[1.53073864, 0.29558804, -0.01949986],
[-2.2227316, 0.19806308, -0.2536748],
[-1.49897159, -0.4114628, 0.23494514],
[1.3140941, 0.67110308, -0.2366431],
[-1.88043225, -0.41844445, 0.04307104],
[1.23661961, -0.09041449, -0.63734812],
[1.60595982, -0.37158339, -0.01919568],
[-1.42542371, -0.12332727, -0.73851355]
];
assert_abs_diff_eq!(expected_x, ds.records(), epsilon = 1e-6);
Ok(())
}
}