use std::{cmp::Reverse, collections::BinaryHeap};
use linfa::Float;
use ndarray::{ArrayBase, ArrayView2, Data, Ix2};
use noisy_float::NoisyFloat;
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};
use crate::{
distance::Distance, heap_elem::MinHeapElem, BuildError, NearestNeighbour, NearestNeighbourBox,
NearestNeighbourIndex, NnError, Point,
};
#[derive(Debug, Clone, PartialEq)]
pub struct LinearSearchIndex<'a, F: Float, D: Distance<F>>(ArrayView2<'a, F>, D);
impl<'a, F: Float, D: Distance<F>> LinearSearchIndex<'a, F, D> {
pub fn new<DT: Data<Elem = F>>(
batch: &'a ArrayBase<DT, Ix2>,
dist_fn: D,
) -> Result<Self, BuildError> {
if batch.ncols() == 0 {
Err(BuildError::ZeroDimension)
} else {
Ok(Self(batch.view(), dist_fn))
}
}
}
impl<'a, F: Float, D: Distance<F>> NearestNeighbourIndex<F> for LinearSearchIndex<'a, F, D> {
fn k_nearest<'b>(
&self,
point: Point<'b, F>,
k: usize,
) -> Result<Vec<(Point<F>, usize)>, NnError> {
if self.0.ncols() != point.len() {
Err(NnError::WrongDimension)
} else {
let mut heap = BinaryHeap::with_capacity(self.0.nrows());
for (i, pt) in self.0.rows().into_iter().enumerate() {
let dist = self.1.rdistance(point.reborrow(), pt.reborrow());
heap.push(MinHeapElem {
elem: (pt.reborrow(), i),
dist: Reverse(NoisyFloat::new(dist)),
});
}
Ok((0..k.min(heap.len()))
.map(|_| heap.pop().unwrap().elem)
.collect())
}
}
fn within_range<'b>(
&self,
point: Point<'b, F>,
range: F,
) -> Result<Vec<(Point<F>, usize)>, NnError> {
if self.0.ncols() != point.len() {
Err(NnError::WrongDimension)
} else {
let range = self.1.dist_to_rdist(range);
Ok(self
.0
.rows()
.into_iter()
.enumerate()
.filter(|(_, pt)| self.1.rdistance(point.reborrow(), pt.reborrow()) < range)
.map(|(i, pt)| (pt, i))
.collect())
}
}
}
#[derive(Default, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde_crate")
)]
pub struct LinearSearch;
impl LinearSearch {
pub fn new() -> Self {
Self
}
}
impl NearestNeighbour for LinearSearch {
fn from_batch_with_leaf_size<'a, F: Float, DT: Data<Elem = F>, D: 'a + Distance<F>>(
&self,
batch: &'a ArrayBase<DT, Ix2>,
leaf_size: usize,
dist_fn: D,
) -> Result<NearestNeighbourBox<'a, F>, BuildError> {
if leaf_size == 0 {
return Err(BuildError::EmptyLeaf);
}
LinearSearchIndex::new(batch, dist_fn).map(|v| Box::new(v) as NearestNeighbourBox<F>)
}
}