1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
//! Kernel methods
//!
mod sparse;

use ndarray::prelude::*;
use ndarray::Data;
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};
use sprs::CsMat;
use std::ops::Mul;

use linfa::{dataset::DatasetBase, dataset::Records, dataset::Targets, traits::Transformer, Float};

/// Kernel representation, can be either dense or sparse
#[derive(Clone)]
pub enum KernelType {
    Dense,
    /// A sparse kernel requires to define a number of neighbours
    /// between 1 and the total number of samples in input minus one.
    Sparse(usize),
}

/// Storage for the kernel matrix
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Debug)]
pub enum KernelInner<F: Float> {
    Dense(Array2<F>),
    Sparse(CsMat<F>),
}

/// A generic kernel
///
///
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
pub struct Kernel<R: Records>
where
    R::Elem: Float,
{
    #[cfg_attr(
        feature = "serde",
        serde(bound(
            serialize = "KernelInner<R::Elem>: Serialize",
            deserialize = "KernelInner<R::Elem>: Deserialize<'de>"
        ))
    )]
    pub inner: KernelInner<R::Elem>,
    #[cfg_attr(
        feature = "serde",
        serde(bound(
            serialize = "KernelMethod<R::Elem>: Serialize",
            deserialize = "KernelMethod<R::Elem>: Deserialize<'de>"
        ))
    )]
    pub method: KernelMethod<R::Elem>,
    pub dataset: R,
}

impl<'a, F: Float> Kernel<ArrayView2<'a, F>> {
    pub fn new(
        dataset: ArrayView2<'a, F>,
        method: KernelMethod<F>,
        kind: KernelType,
    ) -> Kernel<ArrayView2<'a, F>> {
        let inner = match kind {
            KernelType::Dense => KernelInner::Dense(dense_from_fn(&dataset, &method)),
            KernelType::Sparse(k) => KernelInner::Sparse(sparse_from_fn(&dataset, k, &method)),
        };

        Kernel {
            inner,
            method,
            dataset,
        }
    }

    /// Performs the matrix product between the kernel matrix
    /// and the input
    ///
    /// ## Parameters
    ///
    /// - `rhs`: The matrix on the right-hand side of the multiplication
    ///
    /// ## Returns
    ///
    /// A new matrix containing the matrix product between the kernel
    /// and `rhs`
    ///
    /// ## Panics
    ///
    /// If the shapes of kernel and `rhs` are not compatible for multiplication
    pub fn dot(&self, rhs: &ArrayView2<F>) -> Array2<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.dot(rhs),
            KernelInner::Sparse(mat) => mat.mul(rhs),
        }
    }

    /// Sums all elements in the same row of the kernel matrix
    ///
    /// ## Returns
    ///
    /// A new array with the sum of all the elements in each row
    pub fn sum(&self) -> Array1<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.sum_axis(Axis(1)),
            KernelInner::Sparse(mat) => {
                let mut sum = Array1::zeros(mat.cols());
                for (val, i) in mat.iter() {
                    let (_, col) = i;
                    sum[col] += *val;
                }

                sum
            }
        }
    }

    /// Gives the size of the side of the square kernel matrix
    pub fn size(&self) -> usize {
        match &self.inner {
            KernelInner::Dense(mat) => mat.ncols(),
            KernelInner::Sparse(mat) => mat.cols(),
        }
    }

    /// Getter for the data in the upper triangle of the kernel
    /// matrix
    ///
    /// ## Returns
    ///
    /// A copy of all elements in the upper triangle of the kernel
    /// matrix, stored in a `Vec`
    pub fn to_upper_triangle(&self) -> Vec<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat
                .indexed_iter()
                .filter(|((row, col), _)| col > row)
                .map(|(_, val)| *val)
                .collect(),
            KernelInner::Sparse(mat) => {
                let mat = mat.to_dense();
                mat.indexed_iter()
                    .filter(|((row, col), _)| col > row)
                    .map(|(_, val)| *val)
                    .collect()
            }
        }
    }

    /// Getter for the elements in the diagonal of the kernel matrix
    ///
    /// ## Returns
    ///
    /// A new array containing the copy of all elements in the diagonal fo
    /// the kernel matrix
    pub fn diagonal(&self) -> Array1<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.diag().to_owned(),
            KernelInner::Sparse(_) => self
                .dataset
                .outer_iter()
                .map(|x| self.method.distance(x.view(), x.view()))
                .collect(),
        }
    }

    /// Getter for a column of the kernel matrix
    ///
    /// ## Params
    ///
    /// - `i`: the index of the column
    ///
    /// ## Returns
    ///
    /// The i-th column of the kernel matrix, stored as a `Vec`
    ///
    /// ## Panics
    ///
    /// If `i` is out of bounds
    pub fn column(&self, i: usize) -> Vec<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.column(i).to_vec(),
            KernelInner::Sparse(mat) => (0..self.size())
                .map(|j| *mat.get(j, i).unwrap_or(&F::neg_zero()))
                .collect::<Vec<_>>(),
        }
    }

    /// Sums the inner product of `sample` and every one of the samples
    /// used to generate the kernel
    ///
    /// ## Parameters
    ///
    /// * `weights`: the weight of each inner product
    /// * `sample`: the input sample
    ///
    /// ## Returns
    ///
    /// The weighted sum of all inner products of `sample` and every one of the samples
    /// used to generate the kernel
    ///
    /// ## Panics
    ///
    /// If the shapes of `weights` or `sample` are not compatible with the
    /// shape of the kernel matrix
    pub fn weighted_sum(&self, weights: &[F], sample: ArrayView1<F>) -> F {
        self.dataset
            .outer_iter()
            .zip(weights.iter())
            .map(|(x, a)| self.method.distance(x, sample) * *a)
            .sum()
    }

    /// Wheter the kernel is a linear kernel
    ///
    /// ## Returns
    ///
    /// - `true`: if the kernel is linear
    /// - `false`: otherwise
    pub fn is_linear(&self) -> bool {
        self.method.is_linear()
    }

    /// Generates the default set of parameters for building a kernel.
    /// Use this to initialize a set of parameters to be customized using `KernelParams`'s methods
    ///
    /// ## Example
    ///
    /// ```rust
    ///
    /// use linfa_kernel::Kernel;
    /// use linfa::traits::Transformer;
    /// use ndarray::Array2;
    ///
    /// let data = Array2::from_shape_vec((3,2), vec![1., 2., 3., 4., 5., 6.,]).unwrap();
    ///
    /// // Build a kernel from `data` with the defaul parameters
    /// let params = Kernel::params();
    /// let kernel = params.transform(&data);
    ///
    /// ```
    pub fn params() -> KernelParams<F> {
        KernelParams {
            kind: KernelType::Dense,
            method: KernelMethod::Gaussian(F::from(0.5).unwrap()),
        }
    }
}

impl<'a, F: Float> Records for Kernel<ArrayView2<'a, F>> {
    type Elem = F;

    fn observations(&self) -> usize {
        self.size()
    }

    fn nfeatures(&self) -> usize {
        self.size()
    }
}

/// The inner product definition used by a kernel.
///
/// There are three methods available:
///
/// - Gaussian(eps):  `d(x, x') = exp(-norm(x - x')/eps) `
/// - Linear: `d(x, x') = <x, x'>`
/// - Polynomial(constant, degree):  `d(x, x') = (<x, x'> + costant)^(degree)`
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Debug, Clone)]
pub enum KernelMethod<F> {
    /// Gaussian(eps) inner product
    Gaussian(F),
    /// Euclidean inner product
    Linear,
    /// Plynomial(constant, degree) inner product
    Polynomial(F, F),
}

impl<F: Float> KernelMethod<F> {
    pub fn distance(&self, a: ArrayView1<F>, b: ArrayView1<F>) -> F {
        match *self {
            KernelMethod::Gaussian(eps) => {
                let distance = a
                    .iter()
                    .zip(b.iter())
                    .map(|(x, y)| (*x - *y) * (*x - *y))
                    .sum::<F>();

                (-distance / eps).exp()
            }
            KernelMethod::Linear => a.mul(&b).sum(),
            KernelMethod::Polynomial(c, d) => (a.mul(&b).sum() + c).powf(d),
        }
    }

    pub fn is_linear(&self) -> bool {
        matches!(*self, KernelMethod::Linear)
    }
}

/// Defines the set of prameters needed to build a kernel
pub struct KernelParams<F> {
    /// Wether to construct a dense or sparse kernel
    kind: KernelType,
    /// The inner product used by the kernel
    method: KernelMethod<F>,
}

impl<F: Float> KernelParams<F> {
    /// Setter for `method`. Can be chained with `kind` and `transform`.
    ///
    /// ## Arguments
    ///
    /// - `method`: The inner product that will be used by the kernel
    ///
    /// ## Returns
    ///
    /// The modified set of params
    ///
    /// ## Example
    ///
    /// ```rust
    /// use linfa_kernel::{Kernel, KernelMethod};
    /// use linfa::traits::Transformer;
    /// use ndarray::Array2;
    ///
    /// let data = Array2::from_shape_vec((3,2), vec![1., 2., 3., 4., 5., 6.,]).unwrap();
    ///
    /// // Build a kernel from `data` with the defaul parameters
    /// // and then set the preferred method
    /// let params = Kernel::params().method(KernelMethod::Linear);
    /// let kernel = params.transform(&data);
    /// ```
    pub fn method(mut self, method: KernelMethod<F>) -> KernelParams<F> {
        self.method = method;

        self
    }

    /// Setter for `kind`. Can be chained with `method` and `transform`.
    ///
    /// ## Arguments
    ///
    /// - `kind`: The kind of kernel to build, either dense or sparse
    ///
    /// ## Returns
    ///
    /// The modified set of params
    ///
    /// ## Example
    ///
    /// ```rust
    /// use linfa_kernel::{Kernel, KernelType};
    /// use linfa::traits::Transformer;
    /// use ndarray::Array2;
    ///
    /// let data = Array2::from_shape_vec((3,2), vec![1., 2., 3., 4., 5., 6.,]).unwrap();
    ///
    /// // Build a kernel from `data` with the defaul parameters
    /// // and then set the preferred kind
    /// let params = Kernel::params().kind(KernelType::Dense);
    /// let kernel = params.transform(&data);
    /// ```
    pub fn kind(mut self, kind: KernelType) -> KernelParams<F> {
        self.kind = kind;
        self
    }
}

impl<'a, F: Float> Transformer<&'a Array2<F>, Kernel<ArrayView2<'a, F>>> for KernelParams<F> {
    /// Builds a kernel from the input data without copying it.
    ///
    /// A reference to the input data will be kept by the kernel
    /// through an `ArrayView`
    ///
    /// ## Parameters
    ///
    /// - `x`: matrix of records (##records, ##features) in input
    ///
    /// ## Returns
    ///
    /// A kernel build from `x` according to the parameters on which
    /// this method is called
    ///
    /// ## Panics
    ///
    /// If the kernel type is `Sparse` and the number of neighbors specified is
    /// not between 1 and ##records-1
    fn transform(&self, x: &'a Array2<F>) -> Kernel<ArrayView2<'a, F>> {
        Kernel::new(x.view(), self.method.clone(), self.kind.clone())
    }
}

impl<'a, F: Float> Transformer<ArrayView2<'a, F>, Kernel<ArrayView2<'a, F>>> for KernelParams<F> {
    /// Builds a kernel from a view of the input data.
    ///
    /// A reference to the input data will be kept by the kernel
    /// through an `ArrayView`
    ///
    /// ## Parameters
    ///
    /// - `x`: view of a matrix of records (##records, ##features)
    ///
    /// A kernel build from `x` according to the parameters on which
    /// this method is called
    ///
    /// ## Panics
    ///
    /// If the kernel type is `Sparse` and the number of neighbors specified is
    /// not between 1 and ##records-1
    fn transform(&self, x: ArrayView2<'a, F>) -> Kernel<ArrayView2<'a, F>> {
        Kernel::new(x, self.method.clone(), self.kind.clone())
    }
}

impl<'a, F: Float, T: Targets>
    Transformer<&'a DatasetBase<Array2<F>, T>, DatasetBase<Kernel<ArrayView2<'a, F>>, &'a T>>
    for KernelParams<F>
{
    /// Builds a new Dataset with the kernel as the records and the same targets as the input one.
    ///
    /// A reference to the input records will be kept by the kernel
    /// through an `ArrayView`
    ///
    /// ## Parameters
    ///
    /// - `x`: A dataset with a matrix of records (##records, ##features) and any targets
    ///
    /// ## Returns
    ///
    /// A new dataset with:
    ///  - records: a kernel build from `x.records()` according to the parameters on which
    /// this method is called
    ///  - targets: same as `x.targets()`
    ///
    /// ## Panics
    ///
    /// If the kernel type is `Sparse` and the number of neighbors specified is
    /// not between 1 and ##records-1
    fn transform(
        &self,
        x: &'a DatasetBase<Array2<F>, T>,
    ) -> DatasetBase<Kernel<ArrayView2<'a, F>>, &'a T> {
        let kernel = Kernel::new(x.records.view(), self.method.clone(), self.kind.clone());

        DatasetBase::new(kernel, &x.targets)
    }
}

impl<'a, F: Float, T: Targets>
    Transformer<
        &'a DatasetBase<ArrayView2<'a, F>, T>,
        DatasetBase<Kernel<ArrayView2<'a, F>>, &'a [T::Elem]>,
    > for KernelParams<F>
{
    /// Builds a new Dataset with the kernel as the records and the same targets as the input one.
    ///
    /// A reference to the input records will be kept by the kernel
    /// through an `ArrayView`
    ///
    /// ## Parameters
    ///
    /// - `x`: A dataset with a matrix of records (##records, ##features) and any targets
    ///
    /// ## Returns
    ///
    /// A new dataset with:
    ///  - records: a kernel build from `x.records()` according to the parameters on which
    /// this method is called
    ///  - targets: a slice of `x.targets()`
    ///
    /// ## Panics
    ///
    /// If the kernel type is `Sparse` and the number of neighbors specified is
    /// not between 1 and ##records-1
    fn transform(
        &self,
        x: &'a DatasetBase<ArrayView2<'a, F>, T>,
    ) -> DatasetBase<Kernel<ArrayView2<'a, F>>, &'a [T::Elem]> {
        let kernel = Kernel::new(x.records, self.method.clone(), self.kind.clone());

        DatasetBase::new(kernel, x.targets.as_slice())
    }
}

fn dense_from_fn<F: Float, D: Data<Elem = F>>(
    dataset: &ArrayBase<D, Ix2>,
    method: &KernelMethod<F>,
) -> Array2<F> {
    let n_observations = dataset.len_of(Axis(0));
    let mut similarity = Array2::eye(n_observations);

    for i in 0..n_observations {
        for j in 0..n_observations {
            let a = dataset.row(i);
            let b = dataset.row(j);

            similarity[(i, j)] = method.distance(a, b);
        }
    }

    similarity
}

fn sparse_from_fn<F: Float, D: Data<Elem = F>>(
    dataset: &ArrayBase<D, Ix2>,
    k: usize,
    method: &KernelMethod<F>,
) -> CsMat<F> {
    // compute adjacency matrix between points in the input dataset:
    // one point for each row
    let mut data = sparse::adjacency_matrix(dataset, k);

    // iterate through each row of the adjacency matrix where each
    // row is represented by a vec containing a pair (col_index, value)
    // for each non-zero element in the row
    for (i, mut vec) in data.outer_iterator_mut().enumerate() {
        // If there is a non-zero element in row i at index j
        // then it means that points i and j in the input matrix are
        // k-neighbours and their distance is stored in position (i,j)
        for (j, val) in vec.iter_mut() {
            let a = dataset.row(i);
            let b = dataset.row(j);

            *val = method.distance(a, b);
        }
    }
    data
}

#[cfg(test)]
mod tests {
    use super::*;
    use ndarray::{Array1, Array2};
    use std::f64::consts;

    #[test]
    fn sparse_from_fn_test() {
        // pts 0 & 1    pts 2 & 3    pts 4 & 5     pts 6 & 7
        // |0.| |0.1| _ |1.| |1.1| _ |2.| |2.1| _  |3.| |3.1|
        // |0.| |0.1|   |1.| |1.1|   |2.| |2.1|    |3.| |3.1|
        let input_mat = vec![
            0., 0., 0.1, 0.1, 1., 1., 1.1, 1.1, 2., 2., 2.1, 2.1, 3., 3., 3.1, 3.1,
        ];
        let input_arr = Array2::from_shape_vec((8, 2), input_mat).unwrap();
        let adj_mat = sparse_from_fn(&input_arr, 1, &KernelMethod::Linear);
        assert_eq!(adj_mat.nnz(), 16);

        // 2*0^2
        assert_eq!(*adj_mat.get(0, 0).unwrap() as usize, 0);
        // 2*0.1^2
        assert_eq!((*adj_mat.get(1, 1).unwrap() * 100.) as usize, 2);
        // 2*1^2
        assert_eq!(*adj_mat.get(2, 2).unwrap() as usize, 2);
        // 2*1.1^2
        assert_eq!((*adj_mat.get(3, 3).unwrap() * 100.) as usize, 242);
        // 2 * 2^2
        assert_eq!(*adj_mat.get(4, 4).unwrap() as usize, 8);
        // 2 * 2.1^2
        assert_eq!((*adj_mat.get(5, 5).unwrap() * 100.) as usize, 882);
        // 2 * 3^2
        assert_eq!(*adj_mat.get(6, 6).unwrap() as usize, 18);
        // 2 * 3.1^2
        assert_eq!((*adj_mat.get(7, 7).unwrap() * 100.) as usize, 1922);

        // 2*(0 * 0.1)
        assert_eq!(*adj_mat.get(0, 1).unwrap() as usize, 0);
        assert_eq!(*adj_mat.get(1, 0).unwrap() as usize, 0);

        // 2*(1 * 1.1)
        assert_eq!((*adj_mat.get(2, 3).unwrap() * 10.) as usize, 22);
        assert_eq!((*adj_mat.get(3, 2).unwrap() * 10.) as usize, 22);

        // 2*(2 * 2.1)
        assert_eq!((*adj_mat.get(4, 5).unwrap() * 10.) as usize, 84);
        assert_eq!((*adj_mat.get(5, 4).unwrap() * 10.) as usize, 84);

        // 2*(3 * 3.1)
        assert_eq!((*adj_mat.get(6, 7).unwrap() * 10.) as usize, 186);
        assert_eq!((*adj_mat.get(7, 6).unwrap() * 10.) as usize, 186);
    }

    #[test]
    fn dense_from_fn_test() {
        // pts 0 & 1    pts 2 & 3    pts 4 & 5     pts 6 & 7
        // |0.| |0.1| _ |1.| |1.1| _ |2.| |2.1| _  |3.| |3.1|
        // |0.| |0.1|   |1.| |1.1|   |2.| |2.1|    |3.| |3.1|
        let input_mat = vec![
            0., 0., 0.1, 0.1, 1., 1., 1.1, 1.1, 2., 2., 2.1, 2.1, 3., 3., 3.1, 3.1,
        ];
        let input_arr = Array2::from_shape_vec((8, 2), input_mat).unwrap();
        let method: KernelMethod<f64> = KernelMethod::Linear;

        let similarity_matrix = dense_from_fn(&input_arr, &method);

        for i in 0..8 {
            for j in 0..8 {
                assert!(
                    (similarity_matrix.row(i)[j]
                        - method.distance(input_arr.row(i), input_arr.row(j)))
                    .abs()
                        <= f64::EPSILON
                );
            }
        }
    }

    #[test]
    fn gaussian_test() {
        let gauss_1 = KernelMethod::Gaussian(1.);

        let p1 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let distance = gauss_1.distance(p1.view(), p2.view());
        let expected = 1.;

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let p1 = Array1::from_shape_vec(2, vec![1., 1.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![5., 5.]).unwrap();
        let distance = gauss_1.distance(p1.view(), p2.view());
        let expected = (consts::E).powf(-32.);
        // this fails with e^-31 or e^-33 so f64::EPSILON still holds
        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let gauss_01 = KernelMethod::Gaussian(0.1);

        let p1 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let distance = gauss_01.distance(p1.view(), p2.view());
        let expected = 1.;

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let p1 = Array1::from_shape_vec(2, vec![1., 1.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![2., 2.]).unwrap();
        let distance = gauss_01.distance(p1.view(), p2.view());
        let expected = (consts::E).powf(-20.);

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);
    }

    #[test]
    fn poly2_test() {
        let pol_0 = KernelMethod::Polynomial(0., 2.);

        let p1 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let distance = pol_0.distance(p1.view(), p2.view());
        let expected = 0.;

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let p1 = Array1::from_shape_vec(2, vec![1., 1.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![5., 5.]).unwrap();
        let distance = pol_0.distance(p1.view(), p2.view());
        let expected = 100.;
        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let pol_2 = KernelMethod::Polynomial(2., 2.);

        let p1 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![0., 0.]).unwrap();
        let distance = pol_2.distance(p1.view(), p2.view());
        let expected = 4.;

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);

        let p1 = Array1::from_shape_vec(2, vec![1., 1.]).unwrap();
        let p2 = Array1::from_shape_vec(2, vec![2., 2.]).unwrap();
        let distance = pol_2.distance(p1.view(), p2.view());
        let expected = 36.;

        assert!(((distance - expected) as f64).abs() <= f64::EPSILON);
    }

    #[test]
    fn test_kernel_dot() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let vec_to_multiply: Vec<f64> = (0..100).map(|v| v as f64 * 0.3).collect();
        let input_arr = Array2::from_shape_vec((10, 10), input_vec).unwrap();
        let to_multiply = Array2::from_shape_vec((10, 10), vec_to_multiply).unwrap();

        // dense kernel dot
        let mul_mat = dense_from_fn(&input_arr, &KernelMethod::Linear).dot(&to_multiply);
        let kernel = Kernel::params()
            .kind(KernelType::Dense)
            .method(KernelMethod::Linear)
            .transform(&input_arr);
        let mul_ker = kernel.dot(&to_multiply.view());
        assert!(kernels_almost_equal(mul_mat.view(), mul_ker.view()));

        // sparse kernel dot
        let mul_mat = sparse_from_fn(&input_arr, 3, &KernelMethod::Linear).mul(&to_multiply.view());
        let kernel = Kernel::params()
            .kind(KernelType::Sparse(3))
            .method(KernelMethod::Linear)
            .transform(&input_arr);
        let mul_ker = kernel.dot(&to_multiply.view());
        assert!(kernels_almost_equal(mul_mat.view(), mul_ker.view()));
    }

    #[test]
    fn test_kernel_upper_triangle() {
        // symmetric vec, kernel matrix is a "cross" of ones
        let input_vec: Vec<f64> = (0..50).map(|v| v as f64 * 0.1).collect();
        let input_arr_1 = Array2::from_shape_vec((5, 10), input_vec.clone()).unwrap();
        let mut input_arr_2 = Array2::from_shape_vec((5, 10), input_vec).unwrap();
        input_arr_2.invert_axis(Axis(0));
        let input_arr = ndarray::stack(Axis(0), &[input_arr_1.view(), input_arr_2.view()]).unwrap();

        for kind in vec![KernelType::Dense, KernelType::Sparse(1)] {
            let kernel = Kernel::params()
                .kind(kind)
                // Such a value for eps brings to zero the inner product
                // between any two points that are not equal
                .method(KernelMethod::Gaussian(1e-5))
                .transform(&input_arr);
            let mut kernel_upper_triang = kernel.to_upper_triangle();
            assert_eq!(kernel_upper_triang.len(), 45);
            //so that i can use pop()
            kernel_upper_triang.reverse();
            for i in 0..9 {
                for j in (i + 1)..10 {
                    if j == (9 - i) {
                        assert_eq!(kernel_upper_triang.pop().unwrap() as usize, 1);
                    } else {
                        assert_eq!(kernel_upper_triang.pop().unwrap() as usize, 0);
                    }
                }
            }
            assert!(kernel_upper_triang.is_empty());
        }
    }

    #[test]
    fn test_kernel_weighted_sum() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let input_arr = Array2::from_shape_vec((10, 10), input_vec).unwrap();
        let weights = [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.];
        for kind in vec![KernelType::Dense, KernelType::Sparse(1)] {
            let kernel = Kernel::params()
                .kind(kind)
                // Such a value for eps brings to zero the inner product
                // between any two points that are not equal
                .method(KernelMethod::Gaussian(1e-5))
                .transform(&input_arr);
            for (sample, w) in input_arr.outer_iter().zip(&weights) {
                // with that kernel, only the input samples have non
                // zero inner product with the samples used to generate the matrix.
                // In particular, they have inner product equal to one only for the
                // column corresponding to themselves
                let w_sum = kernel.weighted_sum(&weights, sample);
                assert!(values_almost_equal(&w_sum, w));
            }
        }
    }

    #[test]
    fn test_kernel_sum() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let input_arr = Array2::from_shape_vec((10, 10), input_vec).unwrap();

        let method = KernelMethod::Linear;

        // dense kernel sum
        let cols_sum = dense_from_fn(&input_arr, &method).sum_axis(Axis(1));
        let kernel = Kernel::params()
            .kind(KernelType::Dense)
            .method(method.clone())
            .transform(&input_arr);
        let kers_sum = kernel.sum();
        assert!(arrays_almost_equal(cols_sum.view(), kers_sum.view()));

        // sparse kernel sum
        let cols_sum = sparse_from_fn(&input_arr, 3, &method)
            .to_dense()
            .sum_axis(Axis(1));
        let kernel = Kernel::params()
            .kind(KernelType::Sparse(3))
            .method(method)
            .transform(&input_arr);
        let kers_sum = kernel.sum();
        assert!(arrays_almost_equal(cols_sum.view(), kers_sum.view()));
    }

    #[test]
    fn test_kernel_diag() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let input_arr = Array2::from_shape_vec((10, 10), input_vec).unwrap();

        let method = KernelMethod::Linear;

        // dense kernel sum
        let input_diagonal = dense_from_fn(&input_arr, &method).diag().into_owned();
        let kernel = Kernel::params()
            .kind(KernelType::Dense)
            .method(method.clone())
            .transform(&input_arr);
        let kers_diagonal = kernel.diagonal();
        assert!(arrays_almost_equal(
            input_diagonal.view(),
            kers_diagonal.view()
        ));

        // sparse kernel sum
        let input_diagonal: Vec<_> = sparse_from_fn(&input_arr, 3, &method)
            .outer_iterator()
            .enumerate()
            .map(|(i, row)| *row.get(i).unwrap())
            .collect();
        let input_diagonal = Array1::from_shape_vec(10, input_diagonal).unwrap();
        let kernel = Kernel::params()
            .kind(KernelType::Sparse(3))
            .method(method)
            .transform(&input_arr);
        let kers_diagonal = kernel.diagonal();
        assert!(arrays_almost_equal(
            input_diagonal.view(),
            kers_diagonal.view()
        ));
    }

    // inspired from scikit learn's tests
    #[test]
    fn test_kernel_transform_from_array2() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let input = Array2::from_shape_vec((50, 2), input_vec).unwrap();
        // checks that the transform for Array2 builds the right kernel
        // according to its input params.
        check_kernel_from_array2_type(&input, KernelType::Dense);
        check_kernel_from_array2_type(&input, KernelType::Sparse(3));
        // checks that the transform for ArrayView2 builds the right kernel
        // according to its input params.
        check_kernel_from_array_view_2_type(input.view(), KernelType::Dense);
        check_kernel_from_array_view_2_type(input.view(), KernelType::Sparse(3));
    }

    // inspired from scikit learn's tests
    #[test]
    fn test_kernel_transform_from_dataset() {
        let input_vec: Vec<f64> = (0..100).map(|v| v as f64 * 0.1).collect();
        let input_arr = Array2::from_shape_vec((50, 2), input_vec).unwrap();
        let input = DatasetBase::new(input_arr, ());
        // checks that the transform for dataset builds the right kernel
        // according to its input params.
        check_kernel_from_dataset_type(&input, KernelType::Dense);
        check_kernel_from_dataset_type(&input, KernelType::Sparse(3));

        // checks that the transform for dataset view builds the right kernel
        // according to its input params.
        check_kernel_from_dataset_view_type(&input.view(), KernelType::Dense);
        check_kernel_from_dataset_view_type(&input.view(), KernelType::Sparse(3));
    }

    fn check_kernel_from_dataset_type<T: Targets>(
        input: &DatasetBase<Array2<f64>, T>,
        k_type: KernelType,
    ) {
        let methods = vec![
            KernelMethod::Linear,
            KernelMethod::Gaussian(0.1),
            KernelMethod::Polynomial(1., 2.),
        ];
        for method in methods {
            let kernel_ref = Kernel::new(input.records().view(), method.clone(), k_type.clone());
            let kernel_tr = Kernel::params()
                .kind(k_type.clone())
                .method(method.clone())
                .transform(input);
            assert!(kernels_almost_equal(
                kernel_ref.dataset,
                kernel_tr.records.dataset
            ));
        }
    }

    fn check_kernel_from_dataset_view_type<'a, T: Targets>(
        input: &'a DatasetBase<ArrayView2<'a, f64>, T>,
        k_type: KernelType,
    ) {
        let methods = vec![
            KernelMethod::Linear,
            KernelMethod::Gaussian(0.1),
            KernelMethod::Polynomial(1., 2.),
        ];
        for method in methods {
            let kernel_ref = Kernel::new(*input.records(), method.clone(), k_type.clone());
            let kernel_tr = Kernel::params()
                .kind(k_type.clone())
                .method(method.clone())
                .transform(input);
            assert!(kernels_almost_equal(
                kernel_ref.dataset,
                kernel_tr.records.dataset
            ));
        }
    }

    fn check_kernel_from_array2_type(input: &Array2<f64>, k_type: KernelType) {
        let methods = vec![
            KernelMethod::Linear,
            KernelMethod::Gaussian(0.1),
            KernelMethod::Polynomial(1., 2.),
        ];
        for method in methods {
            let kernel_ref = Kernel::new(input.view(), method.clone(), k_type.clone());
            let kernel_tr = Kernel::params()
                .kind(k_type.clone())
                .method(method.clone())
                .transform(input);
            assert!(kernels_almost_equal(kernel_ref.dataset, kernel_tr.dataset));
        }
    }

    fn check_kernel_from_array_view_2_type(input: ArrayView2<f64>, k_type: KernelType) {
        let methods = vec![
            KernelMethod::Linear,
            KernelMethod::Gaussian(0.1),
            KernelMethod::Polynomial(1., 2.),
        ];
        for method in methods {
            let kernel_ref = Kernel::new(input, method.clone(), k_type.clone());
            let kernel_tr = Kernel::params()
                .kind(k_type.clone())
                .method(method.clone())
                .transform(input);
            assert!(kernels_almost_equal(kernel_ref.dataset, kernel_tr.dataset));
        }
    }

    fn kernels_almost_equal(reference: ArrayView2<f64>, transformed: ArrayView2<f64>) -> bool {
        for (ref_row, tr_row) in reference
            .axis_iter(Axis(0))
            .zip(transformed.axis_iter(Axis(0)))
        {
            if !arrays_almost_equal(ref_row, tr_row) {
                return false;
            }
        }
        true
    }

    fn arrays_almost_equal(reference: ArrayView1<f64>, transformed: ArrayView1<f64>) -> bool {
        for (ref_item, tr_item) in reference.iter().zip(transformed.iter()) {
            if !values_almost_equal(ref_item, tr_item) {
                return false;
            }
        }
        true
    }

    fn values_almost_equal(v1: &f64, v2: &f64) -> bool {
        (v1 - v2).abs() <= f64::EPSILON
    }
}