1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//! Kernel methods
//!

mod sparse;

use ndarray::prelude::*;
use ndarray::{linalg::Dot, Data};
use sprs::CsMat;

use linfa::{dataset::Dataset, dataset::Records, dataset::Targets, traits::Transformer, Float};

/// Distance function between two data points
type SimFnc<F> = Box<dyn Fn(ArrayView1<F>, ArrayView1<F>) -> F>;

/// Kernel representation, can be either dense or sparse
#[derive(Clone)]
pub enum KernelType {
    Dense,
    Sparse(usize),
}

/// Storage for the kernel matrix
#[derive(Debug)]
pub enum KernelInner<F: Float> {
    Dense(Array2<F>),
    Sparse(CsMat<F>),
}

/// A generic kernel
///
///
pub struct Kernel<R: Records>
where
    R::Elem: Float,
{
    pub inner: KernelInner<R::Elem>,
    pub fnc: SimFnc<R::Elem>,
    pub dataset: R,
    pub linear: bool,
}

impl<'a, F: Float> Kernel<ArrayView2<'a, F>> {
    pub fn new<G: Fn(ArrayView1<F>, ArrayView1<F>) -> F + 'static>(
        dataset: ArrayView2<'a, F>,
        fnc: G,
        kind: KernelType,
        linear: bool,
    ) -> Kernel<ArrayView2<'a, F>> {
        let inner = match kind {
            KernelType::Dense => KernelInner::Dense(dense_from_fn(&dataset, &fnc)),
            KernelType::Sparse(k) => KernelInner::Sparse(sparse_from_fn(&dataset, k, &fnc)),
        };

        Kernel {
            inner,
            fnc: Box::new(fnc),
            dataset,
            linear,
        }
    }

    pub fn dot(&self, rhs: &ArrayView2<F>) -> Array2<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.dot(rhs),
            KernelInner::Sparse(mat) => mat.dot(rhs),
        }
    }

    pub fn sum(&self) -> Array1<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.sum_axis(Axis(1)),
            KernelInner::Sparse(mat) => {
                let mut sum = Array1::zeros(mat.cols());
                for (val, i) in mat.iter() {
                    let (_, col) = i;
                    sum[col] += *val;
                }

                sum
            }
        }
    }

    pub fn size(&self) -> usize {
        match &self.inner {
            KernelInner::Dense(mat) => mat.ncols(),
            KernelInner::Sparse(mat) => mat.cols(),
        }
    }

    pub fn to_upper_triangle(&self) -> Vec<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat
                .indexed_iter()
                .filter(|((row, col), _)| col > row)
                .map(|(_, val)| *val)
                .collect(),
            KernelInner::Sparse(mat) => {
                let mat = mat.to_dense();
                mat.indexed_iter()
                    .filter(|((row, col), _)| col > row)
                    .map(|(_, val)| *val)
                    .collect()
            }
        }
    }

    pub fn diagonal(&self) -> Array1<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.diag().to_owned(),
            KernelInner::Sparse(_) => self
                .dataset
                .outer_iter()
                .map(|x| (self.fnc)(x.view(), x.view()))
                .collect(),
        }
    }

    pub fn column(&self, i: usize) -> Vec<F> {
        match &self.inner {
            KernelInner::Dense(mat) => mat.column(i).to_vec(),
            KernelInner::Sparse(mat) => (0..self.size())
                .map(|j| *mat.get(j, i).unwrap_or(&F::neg_zero()))
                .collect::<Vec<_>>(),
        }
    }

    pub fn weighted_sum(&self, weights: &[F], sample: ArrayView1<F>) -> F {
        self.dataset
            .outer_iter()
            .zip(weights.iter())
            .map(|(x, a)| (*self.fnc)(x, sample) * *a)
            .sum()
    }

    pub fn is_linear(&self) -> bool {
        self.linear
    }

    pub fn params() -> KernelParams<F> {
        KernelParams {
            kind: KernelType::Dense,
            method: KernelMethod::Gaussian(F::from(0.5).unwrap()),
        }
    }
}

impl<'a, F: Float> Records for Kernel<ArrayView2<'a, F>> {
    type Elem = F;

    fn observations(&self) -> usize {
        self.size()
    }
}

pub enum KernelMethod<F> {
    Gaussian(F),
    Linear,
    Polynomial(F, F),
}

impl<F: Float> KernelMethod<F> {
    pub fn method(&self) -> SimFnc<F> {
        match *self {
            KernelMethod::Gaussian(eps) => Box::new(move |a: ArrayView1<F>, b: ArrayView1<F>| {
                let distance = a
                    .iter()
                    .zip(b.iter())
                    .map(|(x, y)| (*x - *y) * (*x - *y))
                    .sum::<F>();

                (-distance / eps).exp()
            }),
            KernelMethod::Linear => Box::new(move |a: ArrayView1<F>, b: ArrayView1<F>| a.dot(&b)),
            KernelMethod::Polynomial(c, d) => {
                Box::new(move |a: ArrayView1<F>, b: ArrayView1<F>| (a.dot(&b) + c).powf(d))
            }
        }
    }

    pub fn is_linear(&self) -> bool {
        matches!(*self, KernelMethod::Linear)
    }
}

pub struct KernelParams<F> {
    kind: KernelType,
    method: KernelMethod<F>,
}

impl<F: Float> KernelParams<F> {
    pub fn method(mut self, method: KernelMethod<F>) -> KernelParams<F> {
        self.method = method;

        self
    }

    pub fn kind(mut self, kind: KernelType) -> KernelParams<F> {
        self.kind = kind;

        self
    }
}

impl<'a, F: Float> Transformer<&'a Array2<F>, Kernel<ArrayView2<'a, F>>> for KernelParams<F> {
    fn transform(&self, x: &'a Array2<F>) -> Kernel<ArrayView2<'a, F>> {
        let fnc = self.method.method();
        let is_linear = self.method.is_linear();

        Kernel::new(x.view(), fnc, self.kind.clone(), is_linear)
    }
}

impl<'a, F: Float> Transformer<ArrayView2<'a, F>, Kernel<ArrayView2<'a, F>>> for KernelParams<F> {
    fn transform(&self, x: ArrayView2<'a, F>) -> Kernel<ArrayView2<'a, F>> {
        let fnc = self.method.method();
        let is_linear = self.method.is_linear();

        Kernel::new(x, fnc, self.kind.clone(), is_linear)
    }
}

impl<'a, F: Float, T: Targets>
    Transformer<&'a Dataset<Array2<F>, T>, Dataset<Kernel<ArrayView2<'a, F>>, &'a T>>
    for KernelParams<F>
{
    fn transform(&self, x: &'a Dataset<Array2<F>, T>) -> Dataset<Kernel<ArrayView2<'a, F>>, &'a T> {
        let fnc = self.method.method();
        let is_linear = self.method.is_linear();

        let kernel = Kernel::new(x.records.view(), fnc, self.kind.clone(), is_linear);

        Dataset::new(kernel, &x.targets)
    }
}

impl<'a, F: Float, T: Targets>
    Transformer<
        &'a Dataset<ArrayView2<'a, F>, T>,
        Dataset<Kernel<ArrayView2<'a, F>>, &'a [T::Elem]>,
    > for KernelParams<F>
{
    fn transform(
        &self,
        x: &'a Dataset<ArrayView2<'a, F>, T>,
    ) -> Dataset<Kernel<ArrayView2<'a, F>>, &'a [T::Elem]> {
        let fnc = self.method.method();
        let is_linear = self.method.is_linear();

        let kernel = Kernel::new(x.records, fnc, self.kind.clone(), is_linear);

        Dataset::new(kernel, x.targets.as_slice())
    }
}

fn dense_from_fn<F: Float, D: Data<Elem = F>, T: Fn(ArrayView1<F>, ArrayView1<F>) -> F>(
    dataset: &ArrayBase<D, Ix2>,
    fnc: &T,
) -> Array2<F> {
    let n_observations = dataset.len_of(Axis(0));
    let mut similarity = Array2::eye(n_observations);

    for i in 0..n_observations {
        for j in 0..n_observations {
            let a = dataset.row(i);
            let b = dataset.row(j);

            similarity[(i, j)] = fnc(a, b);
        }
    }

    similarity
}

fn sparse_from_fn<F: Float, D: Data<Elem = F>, T: Fn(ArrayView1<F>, ArrayView1<F>) -> F>(
    dataset: &ArrayBase<D, Ix2>,
    k: usize,
    fnc: &T,
) -> CsMat<F> {
    let mut data = sparse::adjacency_matrix(dataset, k);

    for (i, mut vec) in data.outer_iterator_mut().enumerate() {
        for (j, val) in vec.iter_mut() {
            let a = dataset.row(i);
            let b = dataset.row(j);

            *val = fnc(a, b);
        }
    }

    data
}