1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
use std::cmp::Ordering;
use std::fmt::Debug;
use crate::k_means::{KMeansParams, KMeansValidParams};
use crate::IncrKMeansError;
use crate::{k_means::errors::KMeansError, KMeansInit};
use linfa::{prelude::*, DatasetBase, Float};
use linfa_nn::distance::{Distance, L2Dist};
use ndarray::{Array1, Array2, ArrayBase, Axis, Data, DataMut, Ix1, Ix2, Zip};
use ndarray_rand::rand::{Rng, SeedableRng};
use rand_xoshiro::Xoshiro256Plus;
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde_crate")
)]
#[derive(Clone, Debug, PartialEq)]
/// K-means clustering aims to partition a set of unlabeled observations into clusters,
/// where each observation belongs to the cluster with the nearest mean.
///
/// The mean of the points within a cluster is called *centroid*.
///
/// Given the set of centroids, you can assign an observation to a cluster
/// choosing the nearest centroid.
///
/// We provide a modified version of the _standard algorithm_ (also known as Lloyd's Algorithm),
/// called m_k-means, which uses a slightly modified update step to avoid problems with empty
/// clusters. We also provide an incremental version of the algorithm that runs on smaller batches
/// of input data.
///
/// More details on the algorithm can be found in the next section or
/// [here](https://en.wikipedia.org/wiki/K-means_clustering). Details on m_k-means can be found
/// [here](https://www.researchgate.net/publication/228414762_A_Modified_k-means_Algorithm_to_Avoid_Empty_Clusters).
///
/// ## Standard algorithm
///
/// K-means is an iterative algorithm: it progressively refines the choice of centroids.
///
/// It's guaranteed to converge, even though it might not find the optimal set of centroids
/// (unfortunately it can get stuck in a local minimum, finding the optimal minimum if NP-hard!).
///
/// There are three steps in the standard algorithm:
/// - initialisation step: select initial centroids using one of our provided algorithms.
/// - assignment step: assign each observation to the nearest cluster
/// (minimum distance between the observation and the cluster's centroid);
/// - update step: recompute the centroid of each cluster.
///
/// The initialisation step is a one-off, done at the very beginning.
/// Assignment and update are repeated in a loop until convergence is reached (either the
/// euclidean distance between the old and the new clusters is below `tolerance` or
/// we exceed the `max_n_iterations`).
///
/// ## Incremental Algorithm
///
/// In addition to the standard algorithm, we also provide an incremental version of K-means known
/// as Mini-Batch K-means. In this algorithm, the dataset is divided into small batches, and the
/// assignment and update steps are performed on each batch instead of the entire dataset. The
/// update step also takes previous update steps into account when updating the centroids.
///
/// Due to using smaller batches, Mini-Batch K-means takes significantly less time to execute than
/// the standard K-means algorithm, although it may yield slightly worse centroids.
///
/// More details on Mini-Batch K-means can be found [here](https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf).
///
/// ## Parallelisation
///
/// The work performed by the assignment step does not require any coordination:
/// the closest centroid for each point can be computed independently from the
/// closest centroid for any of the remaining points.
///
/// This makes it a good candidate for parallel execution: `KMeans::fit` parallelises the
/// assignment step thanks to the `rayon` feature in `ndarray`.
///
/// The update step requires a bit more coordination (computing a rolling mean in
/// parallel) but it is still parallelisable.
/// Nonetheless, our first attempts have not improved performance
/// (most likely due to our strategy used to split work between threads), hence
/// the update step is currently executed on a single thread.
///
/// ## Tutorial
///
/// Let's do a walkthrough of a training-predict-save example.
///
/// ```
/// use linfa::DatasetBase;
/// use linfa::traits::{Fit, FitWith, Predict};
/// use linfa_clustering::{KMeansParams, KMeans, IncrKMeansError};
/// use linfa_datasets::generate;
/// use ndarray::{Axis, array, s};
/// use ndarray_rand::rand::SeedableRng;
/// use rand_xoshiro::Xoshiro256Plus;
/// use approx::assert_abs_diff_eq;
///
/// // Our random number generator, seeded for reproducibility
/// let seed = 42;
/// let mut rng = Xoshiro256Plus::seed_from_u64(seed);
///
/// // `expected_centroids` has shape `(n_centroids, n_features)`
/// // i.e. three points in the 2-dimensional plane
/// let expected_centroids = array![[0., 1.], [-10., 20.], [-1., 10.]];
/// // Let's generate a synthetic dataset: three blobs of observations
/// // (100 points each) centered around our `expected_centroids`
/// let data = generate::blobs(100, &expected_centroids, &mut rng);
/// let n_clusters = expected_centroids.len_of(Axis(0));
///
/// // Standard K-means
/// {
/// let observations = DatasetBase::from(data.clone());
/// // Let's configure and run our K-means algorithm
/// // We use the builder pattern to specify the hyperparameters
/// // `n_clusters` is the only mandatory parameter.
/// // If you don't specify the others (e.g. `n_runs`, `tolerance`, `max_n_iterations`)
/// // default values will be used.
/// let model = KMeans::params_with_rng(n_clusters, rng.clone())
/// .tolerance(1e-2)
/// .fit(&observations)
/// .expect("KMeans fitted");
///
/// // Once we found our set of centroids, we can also assign new points to the nearest cluster
/// let new_observation = DatasetBase::from(array![[-9., 20.5]]);
/// // Predict returns the **index** of the nearest cluster
/// let dataset = model.predict(new_observation);
/// // We can retrieve the actual centroid of the closest cluster using `.centroids()`
/// let closest_centroid = &model.centroids().index_axis(Axis(0), dataset.targets()[0]);
/// assert_abs_diff_eq!(closest_centroid.to_owned(), &array![-10., 20.], epsilon = 1e-1);
/// }
///
/// // Incremental K-means
/// {
/// let batch_size = 100;
/// // Shuffling the dataset is one way of ensuring that the batches contain random points from
/// // the dataset, which is required for the algorithm to work properly
/// let observations = DatasetBase::from(data.clone()).shuffle(&mut rng);
///
/// let n_clusters = expected_centroids.nrows();
/// let clf = KMeans::params_with_rng(n_clusters, rng.clone()).tolerance(1e-3);
///
/// // Repeatedly run fit_with on every batch in the dataset until we have converged
/// let model = observations
/// .sample_chunks(batch_size)
/// .cycle()
/// .try_fold(None, |current, batch| {
/// match clf.fit_with(current, &batch) {
/// // Early stop condition for the kmeans loop
/// Ok(model) => Err(model),
/// // Continue running if not converged
/// Err(IncrKMeansError::NotConverged(model)) => Ok(Some(model)),
/// Err(err) => panic!("unexpected kmeans error: {}", err),
/// }
/// })
/// .unwrap_err();
///
/// let new_observation = DatasetBase::from(array![[-9., 20.5]]);
/// let dataset = model.predict(new_observation);
/// let closest_centroid = &model.centroids().index_axis(Axis(0), dataset.targets()[0]);
/// assert_abs_diff_eq!(closest_centroid.to_owned(), &array![-10., 20.], epsilon = 1e-1);
/// }
/// ```
///
/*///
/// // The model can be serialised (and deserialised) to disk using serde
/// // We'll use the JSON format here for simplicity
/// let filename = "k_means_model.json";
/// let writer = std::fs::File::create(filename).expect("Failed to open file.");
/// serde_json::to_writer(writer, &model).expect("Failed to serialise model.");
///
/// let reader = std::fs::File::open(filename).expect("Failed to open file.");
/// let loaded_model: KMeans<f64> = serde_json::from_reader(reader).expect("Failed to deserialise model");
///
/// assert_abs_diff_eq!(model.centroids(), loaded_model.centroids(), epsilon = 1e-10);
/// assert_eq!(model.hyperparameters(), loaded_model.hyperparameters());
/// ```
*/
pub struct KMeans<F: Float, D: Distance<F>> {
centroids: Array2<F>,
cluster_count: Array1<F>,
inertia: F,
dist_fn: D,
}
impl<F: Float> KMeans<F, L2Dist> {
pub fn params(nclusters: usize) -> KMeansParams<F, Xoshiro256Plus, L2Dist> {
KMeansParams::new(nclusters, Xoshiro256Plus::seed_from_u64(42), L2Dist)
}
pub fn params_with_rng<R: Rng>(nclusters: usize, rng: R) -> KMeansParams<F, R, L2Dist> {
KMeansParams::new(nclusters, rng, L2Dist)
}
}
impl<F: Float, D: Distance<F>> KMeans<F, D> {
pub fn params_with<R: Rng>(nclusters: usize, rng: R, dist_fn: D) -> KMeansParams<F, R, D> {
KMeansParams::new(nclusters, rng, dist_fn)
}
/// Return the set of centroids as a 2-dimensional matrix with shape
/// `(n_centroids, n_features)`.
pub fn centroids(&self) -> &Array2<F> {
&self.centroids
}
/// Return the number of training points belonging to each cluster
pub fn cluster_count(&self) -> &Array1<F> {
&self.cluster_count
}
/// Return the sum of distances between each training point and its closest centroid, averaged
/// across all training points. When training incrementally, this value is computed on the
/// most recent batch.
pub fn inertia(&self) -> F {
self.inertia
}
}
impl<F: Float, R: Rng + Clone, DA: Data<Elem = F>, T, D: Distance<F>>
Fit<ArrayBase<DA, Ix2>, T, KMeansError> for KMeansValidParams<F, R, D>
{
type Object = KMeans<F, D>;
/// Given an input matrix `observations`, with shape `(n_observations, n_features)`,
/// `fit` identifies `n_clusters` centroids based on the training data distribution.
///
/// An instance of `KMeans` is returned.
///
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>,
) -> Result<Self::Object, KMeansError> {
let mut rng = self.rng().clone();
let observations = dataset.records().view();
let n_samples = dataset.nsamples();
let mut min_inertia = F::infinity();
let mut best_centroids = None;
let mut memberships = Array1::zeros(n_samples);
let mut dists = Array1::zeros(n_samples);
let n_runs = self.n_runs();
for _ in 0..n_runs {
let mut centroids =
self.init_method()
.run(self.dist_fn(), self.n_clusters(), observations, &mut rng);
let mut n_iter = 0;
let inertia = loop {
update_memberships_and_dists(
self.dist_fn(),
¢roids,
&observations,
&mut memberships,
&mut dists,
);
let new_centroids = compute_centroids(¢roids, &observations, &memberships);
let distance = self
.dist_fn()
.distance(centroids.view(), new_centroids.view());
centroids = new_centroids;
n_iter += 1;
if distance < self.tolerance() || n_iter == self.max_n_iterations() {
break dists.sum();
}
};
// We keep the centroids which minimize the inertia (defined as the sum of
// the squared distances of the closest centroid for all observations)
// over the n runs of the KMeans algorithm.
if inertia < min_inertia {
min_inertia = inertia;
best_centroids = Some(centroids.clone());
}
}
match best_centroids {
Some(centroids) => {
let mut cluster_count = Array1::zeros(self.n_clusters());
memberships
.iter()
.for_each(|&c| cluster_count[c] += F::one());
Ok(KMeans {
centroids,
cluster_count,
inertia: min_inertia / F::cast(dataset.nsamples()),
dist_fn: self.dist_fn().clone(),
})
}
_ => Err(KMeansError::InertiaError),
}
}
}
impl<'a, F: Float + Debug, R: Rng + Clone, DA: Data<Elem = F>, T, D: 'a + Distance<F> + Debug>
FitWith<'a, ArrayBase<DA, Ix2>, T, IncrKMeansError<KMeans<F, D>>>
for KMeansValidParams<F, R, D>
{
type ObjectIn = Option<KMeans<F, D>>;
type ObjectOut = KMeans<F, D>;
/// Performs a single batch update of the Mini-Batch K-means algorithm.
///
/// Given an input matrix `observations`, with shape `(n_batch, n_features)` and a previous
/// `KMeans` model, the model's centroids are updated with the input matrix. If `model` is
/// `None`, then it's initialized using the specified initialization algorithm. The return
/// value consists of the updated model and a `bool` value that indicates whether the algorithm
/// has converged.
fn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>,
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>> {
let observations = dataset.records().view();
let n_samples = dataset.nsamples();
let mut model = match model {
Some(model) => model,
None => {
let centroids = if let KMeansInit::Precomputed(centroids) = self.init_method() {
// If using precomputed centroids, don't run the init algorithm multiple times
centroids.clone()
} else {
let mut rng = self.rng().clone();
let mut dists = Array1::zeros(n_samples);
// Initial centroids derived from the first batch by running the init algorithm
// n_runs times and taking the centroids with the lowest inertia
(0..self.n_runs())
.map(|_| {
let centroids = self.init_method().run(
self.dist_fn(),
self.n_clusters(),
observations,
&mut rng,
);
update_min_dists(self.dist_fn(), ¢roids, &observations, &mut dists);
(centroids, dists.sum())
})
.min_by(|(_, d1), (_, d2)| {
if d1 < d2 {
Ordering::Less
} else {
Ordering::Greater
}
})
.unwrap()
.0
};
KMeans {
centroids,
cluster_count: Array1::zeros(self.n_clusters()),
inertia: F::zero(),
dist_fn: self.dist_fn().clone(),
}
}
};
let mut memberships = Array1::zeros(n_samples);
let mut dists = Array1::zeros(n_samples);
update_memberships_and_dists(
self.dist_fn(),
&model.centroids,
&observations,
&mut memberships,
&mut dists,
);
let new_centroids = compute_centroids_incremental(
&observations,
&memberships,
&model.centroids,
&mut model.cluster_count,
);
model.inertia = dists.sum() / F::cast(n_samples);
let dist = self
.dist_fn()
.distance(model.centroids.view(), new_centroids.view());
model.centroids = new_centroids;
if dist < self.tolerance() {
Ok(model)
} else {
Err(IncrKMeansError::NotConverged(model))
}
}
}
impl<F: Float, DA: Data<Elem = F>, D: Distance<F>> Transformer<&ArrayBase<DA, Ix2>, Array1<F>>
for KMeans<F, D>
{
/// Given an input matrix `observations`, with shape `(n_observations, n_features)`,
/// `transform` returns, for each observation, its squared distance to its centroid.
fn transform(&self, observations: &ArrayBase<DA, Ix2>) -> Array1<F> {
let mut dists = Array1::zeros(observations.nrows());
update_min_dists(
&self.dist_fn,
&self.centroids,
&observations.view(),
&mut dists,
);
dists
}
}
impl<F: Float, DA: Data<Elem = F>, D: Distance<F>> PredictInplace<ArrayBase<DA, Ix2>, Array1<usize>>
for KMeans<F, D>
{
/// Given an input matrix `observations`, with shape `(n_observations, n_features)`,
/// `predict` returns, for each observation, the index of the closest cluster/centroid.
///
/// You can retrieve the centroid associated to an index using the
/// [`centroids` method](#method.centroids).
fn predict_inplace(&self, observations: &ArrayBase<DA, Ix2>, memberships: &mut Array1<usize>) {
assert_eq!(
observations.nrows(),
memberships.len(),
"The number of data points must match the number of memberships."
);
update_cluster_memberships(
&self.dist_fn,
&self.centroids,
&observations.view(),
memberships,
);
}
fn default_target(&self, x: &ArrayBase<DA, Ix2>) -> Array1<usize> {
Array1::zeros(x.nrows())
}
}
impl<F: Float, DA: Data<Elem = F>, D: Distance<F>> PredictInplace<ArrayBase<DA, Ix1>, usize>
for KMeans<F, D>
{
/// Given one input observation, return the index of its closest cluster
///
/// You can retrieve the centroid associated to an index using the
/// [`centroids` method](#method.centroids).
fn predict_inplace(&self, observation: &ArrayBase<DA, Ix1>, membership: &mut usize) {
*membership = closest_centroid(&self.dist_fn, &self.centroids, observation).0;
}
fn default_target(&self, _x: &ArrayBase<DA, Ix1>) -> usize {
0
}
}
/// K-means is an iterative algorithm.
/// We will perform the assignment and update steps until we are satisfied
/// (according to our convergence criteria).
///
/// `compute_centroids` returns a 2-dimensional array,
/// where the i-th row corresponds to the i-th cluster.
fn compute_centroids<F: Float>(
old_centroids: &Array2<F>,
// (n_observations, n_features)
observations: &ArrayBase<impl Data<Elem = F>, Ix2>,
// (n_observations,)
cluster_memberships: &ArrayBase<impl Data<Elem = usize>, Ix1>,
) -> Array2<F> {
let n_clusters = old_centroids.nrows();
let mut counts: Array1<usize> = Array1::ones(n_clusters);
let mut centroids = Array2::zeros((n_clusters, observations.ncols()));
Zip::from(observations.rows())
.and(cluster_memberships)
.for_each(|observation, &cluster_membership| {
let mut centroid = centroids.row_mut(cluster_membership);
centroid += &observation;
counts[cluster_membership] += 1;
});
// m_k-means: Treat the old centroid like another point in the cluster
centroids += old_centroids;
Zip::from(centroids.rows_mut())
.and(&counts)
.for_each(|mut centroid, &cnt| centroid /= F::cast(cnt));
centroids
}
/// Returns new centroids which has the moving average of all observations in each cluster added to
/// the old centroids.
/// Updates `counts` with the number of observations in each cluster.
fn compute_centroids_incremental<F: Float>(
observations: &ArrayBase<impl Data<Elem = F>, Ix2>,
cluster_memberships: &ArrayBase<impl Data<Elem = usize>, Ix1>,
old_centroids: &ArrayBase<impl Data<Elem = F>, Ix2>,
counts: &mut ArrayBase<impl DataMut<Elem = F>, Ix1>,
) -> Array2<F> {
let mut centroids = old_centroids.to_owned();
// We can parallelize this
Zip::from(observations.rows())
.and(cluster_memberships)
.for_each(|obs, &c| {
// Computes centroids[c] += (observation - centroids[c]) / counts[c]
// If cluster is empty for this batch, then this wouldn't even be called, so no
// chance of getting NaN.
counts[c] += F::one();
let shift = (&obs - ¢roids.row(c)) / counts[c];
let mut centroid = centroids.row_mut(c);
centroid += &shift;
});
centroids
}
// Update `cluster_memberships` with the index of the cluster each observation belongs to.
pub(crate) fn update_cluster_memberships<F: Float, D: Distance<F>>(
dist_fn: &D,
centroids: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
observations: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
cluster_memberships: &mut ArrayBase<impl DataMut<Elem = usize>, Ix1>,
) {
Zip::from(observations.axis_iter(Axis(0)))
.and(cluster_memberships)
.par_for_each(|observation, cluster_membership| {
*cluster_membership = closest_centroid(dist_fn, centroids, &observation).0
});
}
// Updates `dists` with the distance of each observation from its closest centroid.
pub(crate) fn update_min_dists<F: Float, D: Distance<F>>(
dist_fn: &D,
centroids: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
observations: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
dists: &mut ArrayBase<impl DataMut<Elem = F>, Ix1>,
) {
Zip::from(observations.axis_iter(Axis(0)))
.and(dists)
.par_for_each(|observation, dist| {
*dist = closest_centroid(dist_fn, centroids, &observation).1
});
}
// Efficient combination of `update_cluster_memberships` and `update_min_dists`.
pub(crate) fn update_memberships_and_dists<F: Float, D: Distance<F>>(
dist_fn: &D,
centroids: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
observations: &ArrayBase<impl Data<Elem = F> + Sync, Ix2>,
cluster_memberships: &mut ArrayBase<impl DataMut<Elem = usize>, Ix1>,
dists: &mut ArrayBase<impl DataMut<Elem = F>, Ix1>,
) {
Zip::from(observations.axis_iter(Axis(0)))
.and(cluster_memberships)
.and(dists)
.par_for_each(|observation, cluster_membership, dist| {
let (m, d) = closest_centroid(dist_fn, centroids, &observation);
*cluster_membership = m;
*dist = d;
});
}
/// Given a matrix of centroids with shape (n_centroids, n_features) and an observation,
/// return the index of the closest centroid (the index of the corresponding row in `centroids`).
pub(crate) fn closest_centroid<F: Float, D: Distance<F>>(
dist_fn: &D,
// (n_centroids, n_features)
centroids: &ArrayBase<impl Data<Elem = F>, Ix2>,
// (n_features)
observation: &ArrayBase<impl Data<Elem = F>, Ix1>,
) -> (usize, F) {
let iterator = centroids.rows().into_iter();
let first_centroid = centroids.row(0);
let (mut closest_index, mut minimum_distance) = (
0,
dist_fn.rdistance(first_centroid.view(), observation.view()),
);
for (centroid_index, centroid) in iterator.enumerate() {
let distance = dist_fn.rdistance(centroid.view(), observation.view());
if distance < minimum_distance {
closest_index = centroid_index;
minimum_distance = distance;
}
}
(closest_index, minimum_distance)
}
#[cfg(test)]
mod tests {
use super::super::KMeansInit;
use super::*;
use crate::KMeansParamsError;
use approx::assert_abs_diff_eq;
use linfa_nn::distance::L1Dist;
use ndarray::{array, concatenate, Array, Array1, Array2, Axis};
use ndarray_rand::rand::prelude::ThreadRng;
use ndarray_rand::rand::SeedableRng;
use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
#[test]
fn autotraits() {
fn has_autotraits<T: Send + Sync + Sized + Unpin>() {}
has_autotraits::<KMeans<f64, L2Dist>>();
has_autotraits::<KMeansParamsError>();
has_autotraits::<KMeansError>();
has_autotraits::<IncrKMeansError<String>>();
}
fn function_test_1d(x: &Array2<f64>) -> Array2<f64> {
let mut y = Array2::zeros(x.dim());
Zip::from(&mut y).and(x).for_each(|yi, &xi| {
if xi < 0.4 {
*yi = xi * xi;
} else if (0.4..0.8).contains(&xi) {
*yi = 3. * xi + 1.;
} else {
*yi = f64::sin(10. * xi);
}
});
y
}
macro_rules! calc_inertia {
($dist:expr, $centroids:expr, $obs:expr, $memberships:expr) => {
$obs.rows()
.into_iter()
.zip($memberships.iter())
.map(|(row, &c)| $dist.rdistance(row.view(), $centroids.row(c).view()))
.sum::<f64>()
};
}
macro_rules! calc_memberships {
($dist:expr, $centroids:expr, $obs:expr) => {{
let mut memberships = Array1::zeros($obs.nrows());
update_cluster_memberships(&$dist, &$centroids, &$obs, &mut memberships);
memberships
}};
}
#[test]
fn test_min_dists() {
let centroids = array![[0.0, 1.0], [40.0, 10.0]];
let observations = array![[3.0, 4.0], [1.0, 3.0], [25.0, 15.0]];
let mut dists = Array1::zeros(observations.nrows());
update_min_dists(&L2Dist, ¢roids, &observations, &mut dists);
assert_abs_diff_eq!(dists, array![18.0, 5.0, 250.0]);
update_min_dists(&L1Dist, ¢roids, &observations, &mut dists);
assert_abs_diff_eq!(dists, array![6.0, 3.0, 20.0]);
}
fn test_n_runs<D: Distance<f64>>(dist_fn: D) {
let mut rng = Xoshiro256Plus::seed_from_u64(42);
let xt = Array::random_using(100, Uniform::new(0., 1.0), &mut rng).insert_axis(Axis(1));
let yt = function_test_1d(&xt);
let data = concatenate(Axis(1), &[xt.view(), yt.view()]).unwrap();
for init in &[
KMeansInit::Random,
KMeansInit::KMeansPlusPlus,
KMeansInit::KMeansPara,
] {
// First clustering with one iteration
let dataset = DatasetBase::from(data.clone());
let model = KMeans::params_with(3, rng.clone(), dist_fn.clone())
.n_runs(1)
.init_method(init.clone())
.fit(&dataset)
.expect("KMeans fitted");
let clusters = model.predict(dataset);
let inertia = calc_inertia!(
dist_fn,
model.centroids(),
clusters.records,
clusters.targets
);
let total_dist = model.transform(&clusters.records.view()).sum();
assert_abs_diff_eq!(inertia, total_dist, epsilon = 1e-5);
let single_cluster: usize = model.predict(&data.row(0));
assert_abs_diff_eq!(single_cluster, clusters.targets[0]);
// Second clustering with 10 iterations (default)
let dataset2 = DatasetBase::from(clusters.records().clone());
let model2 = KMeans::params_with(3, rng.clone(), dist_fn.clone())
.init_method(init.clone())
.fit(&dataset2)
.expect("KMeans fitted");
let clusters2 = model2.predict(dataset2);
let inertia2 = calc_inertia!(
dist_fn,
model2.centroids(),
clusters2.records,
clusters2.targets
);
let total_dist2 = model2.transform(&clusters2.records.view()).sum();
assert_abs_diff_eq!(inertia2, total_dist2, epsilon = 1e-5);
// Check we improve inertia (only really makes a difference for random init)
if *init == KMeansInit::Random {
assert!(inertia2 <= inertia);
}
}
}
#[test]
fn test_n_runs_l2dist() {
test_n_runs(L2Dist);
}
#[test]
fn test_n_runs_l1dist() {
test_n_runs(L1Dist);
}
#[test]
fn compute_centroids_works() {
let cluster_size = 100;
let n_features = 4;
// Let's setup a synthetic set of observations, composed of two clusters with known means
let cluster_1: Array2<f64> =
Array::random((cluster_size, n_features), Uniform::new(-100., 100.));
let memberships_1 = Array1::zeros(cluster_size);
let expected_centroid_1 = cluster_1.sum_axis(Axis(0)) / (cluster_size + 1) as f64;
let cluster_2: Array2<f64> =
Array::random((cluster_size, n_features), Uniform::new(-100., 100.));
let memberships_2 = Array1::ones(cluster_size);
let expected_centroid_2 = cluster_2.sum_axis(Axis(0)) / (cluster_size + 1) as f64;
// `concatenate` combines arrays along a given axis: https://docs.rs/ndarray/0.13.0/ndarray/fn.concatenate.html
let observations = concatenate(Axis(0), &[cluster_1.view(), cluster_2.view()]).unwrap();
let memberships =
concatenate(Axis(0), &[memberships_1.view(), memberships_2.view()]).unwrap();
// Does it work?
let old_centroids = Array2::zeros((2, n_features));
let centroids = compute_centroids(&old_centroids, &observations, &memberships);
assert_abs_diff_eq!(
centroids.index_axis(Axis(0), 0),
expected_centroid_1,
epsilon = 1e-5
);
assert_abs_diff_eq!(
centroids.index_axis(Axis(0), 1),
expected_centroid_2,
epsilon = 1e-5
);
assert_eq!(centroids.len_of(Axis(0)), 2);
}
#[test]
fn test_compute_extra_centroids() {
let observations = array![[1.0, 2.0]];
let memberships = array![0];
// Should return an average of 0 for empty clusters
let old_centroids = Array2::ones((2, 2));
let centroids = compute_centroids(&old_centroids, &observations, &memberships);
assert_abs_diff_eq!(centroids, array![[1.0, 1.5], [1.0, 1.0]]);
}
#[test]
// An observation is closest to itself.
fn nothing_is_closer_than_self() {
let n_centroids = 20;
let n_features = 5;
let mut rng = Xoshiro256Plus::seed_from_u64(42);
let centroids: Array2<f64> = Array::random_using(
(n_centroids, n_features),
Uniform::new(-100., 100.),
&mut rng,
);
let expected_memberships = (0..n_centroids).into_iter().collect::<Array1<_>>();
assert_eq!(
calc_memberships!(L2Dist, centroids, centroids),
expected_memberships
);
assert_eq!(
calc_memberships!(L1Dist, centroids, centroids),
expected_memberships
);
}
#[test]
fn oracle_test_for_closest_centroid() {
let centroids = array![[0., 0.], [1., 2.], [20., 0.], [0., 20.],];
let observations = array![[1., 0.6], [20., 2.], [20., 0.], [7., 20.],];
let l2_memberships = array![0, 2, 2, 3];
let l1_memberships = array![1, 2, 2, 3];
assert_eq!(
calc_memberships!(L2Dist, centroids, observations),
l2_memberships
);
assert_eq!(
calc_memberships!(L1Dist, centroids, observations),
l1_memberships
);
}
#[test]
fn test_compute_centroids_incremental() {
let observations = array![[-1.0, -3.0], [0., 0.], [3., 5.], [5., 5.]];
let memberships = array![0, 0, 1, 1];
let centroids = array![[-1., -1.], [3., 4.], [7., 8.]];
let mut counts = array![3.0, 0.0, 1.0];
let centroids =
compute_centroids_incremental(&observations, &memberships, ¢roids, &mut counts);
assert_abs_diff_eq!(centroids, array![[-4. / 5., -6. / 5.], [4., 5.], [7., 8.]]);
assert_abs_diff_eq!(counts, array![5., 2., 1.]);
}
#[test]
fn test_incremental_kmeans() {
let dataset1 = DatasetBase::from(array![[-1.0, -3.0], [0., 0.], [3., 5.], [5., 5.]]);
let dataset2 = DatasetBase::from(array![[-5.0, -5.0], [0., 0.], [10., 10.]]);
let model = KMeans {
centroids: array![[-1., -1.], [3., 4.], [7., 8.]],
cluster_count: array![0., 0., 0.],
inertia: 0.0,
dist_fn: L2Dist,
};
let rng = Xoshiro256Plus::seed_from_u64(45);
let params = KMeans::params_with_rng(3, rng).tolerance(100.0);
// Should converge on first try
let model = params.fit_with(Some(model), &dataset1).unwrap();
assert_abs_diff_eq!(model.centroids(), &array![[-0.5, -1.5], [4., 5.], [7., 8.]]);
let model = params.fit_with(Some(model), &dataset2).unwrap();
assert_abs_diff_eq!(
model.centroids(),
&array![[-6. / 4., -8. / 4.], [4., 5.], [10., 10.]]
);
}
#[test]
fn test_tolerance() {
let rng = Xoshiro256Plus::seed_from_u64(45);
// The "correct" centroid for the dataset is [6, 6], so the centroid distance from the
// initial centroid in the first iteration should be around 8.48. With a tolerance of 8.5,
// KMeans should converge on first iteration.
let params = KMeans::params_with_rng(1, rng)
.tolerance(8.5)
.init_method(KMeansInit::Precomputed(array![[0., 0.]]));
let data = DatasetBase::from(array![[1., 1.], [11., 11.]]);
assert!(params.fit_with(None, &data).is_ok());
}
#[test]
fn test_max_n_iterations() {
let mut rng = Xoshiro256Plus::seed_from_u64(42);
let xt = Array::random_using(100, Uniform::new(0., 1.0), &mut rng).insert_axis(Axis(1));
let yt = function_test_1d(&xt);
let data = concatenate(Axis(1), &[xt.view(), yt.view()]).unwrap();
let dataset = DatasetBase::from(data.clone());
// For data created using the above rng and seed, for 6 clusters, it would take 8 iterations to converge.
// However, when specifying max_n_iterations as 5, the algorithm should stop early gracefully.
let _model = KMeans::params_with(6, rng.clone(), L2Dist)
.n_runs(1)
.max_n_iterations(5)
.init_method(KMeansInit::Random)
.fit(&dataset)
.expect("KMeans fitted");
}
fn fittable<T: Fit<Array2<f64>, (), KMeansError>>(_: T) {}
#[test]
fn thread_rng_fittable() {
fittable(KMeans::params_with_rng(1, ThreadRng::default()));
}
}