1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
//! `linfa-clustering` aims to provide pure Rust implementations //! of popular clustering algorithms. //! //! ## The big picture //! //! `linfa-clustering` is a crate in the `linfa` ecosystem, a wider effort to //! bootstrap a toolkit for classical Machine Learning implemented in pure Rust, //! kin in spirit to Python's `scikit-learn`. //! //! You can find a roadmap (and a selection of good first issues) //! [here](https://github.com/LukeMathWalker/linfa/issues) - contributors are more than welcome! //! //! ## Current state //! //! Right now `linfa-clustering` provides the following clustering algorithms: //! * [K-Means](struct.KMeans.html) //! * [DBSCAN](struct.Dbscan.html) //! * [Approximated DBSCAN](struct.AppxDbscan.html) //! * [Gaussian-Mixture-Model](struct.GaussianMixtureModel.html) //! //! Implementation choices, algorithmic details and tutorials can be found in the page dedicated to the specific algorithms. //! //! Additionally, this crate provides the [`generate_blobs`](fn.generate_blobs.html) utility to quickly generate test datasets for clustering. //! //! Check [here](https://github.com/LukeMathWalker/clustering-benchmarks) for extensive benchmarks against `scikit-learn`'s K-means implementation. mod appx_dbscan; mod dbscan; mod gaussian_mixture; #[allow(clippy::new_ret_no_self)] mod k_means; mod utils; pub use appx_dbscan::*; pub use dbscan::*; pub use gaussian_mixture::*; pub use k_means::*; pub use utils::*;