1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use super::init::KMeansInit;
use linfa::Float;
use ndarray_rand::rand::{Rng, SeedableRng};
use rand_isaac::Isaac64Rng;
#[cfg(feature = "serde")]
use serde_crate::{Deserialize, Serialize};

#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_crate")
)]
#[derive(Clone, Debug, PartialEq)]
/// The set of hyperparameters that can be specified for the execution of
/// the [K-means algorithm](struct.KMeans.html).
pub struct KMeansHyperParams<F: Float, R: Rng> {
    /// Number of time the k-means algorithm will be run with different centroid seeds.
    n_runs: usize,
    /// The training is considered complete if the euclidean distance
    /// between the old set of centroids and the new set of centroids
    /// after a training iteration is lower or equal than `tolerance`.
    tolerance: F,
    /// We exit the training loop when the number of training iterations
    /// exceeds `max_n_iterations` even if the `tolerance` convergence
    /// condition has not been met.
    max_n_iterations: u64,
    /// The number of clusters we will be looking for in the training dataset.
    n_clusters: usize,
    /// The initialization strategy used to initialize the centroids.
    init: KMeansInit<F>,
    /// The random number generator
    rng: R,
}

/// An helper struct used to construct a set of [valid hyperparameters](struct.KMeansHyperParams.html) for
/// the [K-means algorithm](struct.KMeans.html) (using the builder pattern).
pub struct KMeansHyperParamsBuilder<F: Float, R: Rng> {
    n_runs: usize,
    tolerance: F,
    max_n_iterations: u64,
    n_clusters: usize,
    init: KMeansInit<F>,
    rng: R,
}

impl<F: Float, R: Rng + Clone> KMeansHyperParamsBuilder<F, R> {
    /// Set the value of `n_runs`.
    ///
    /// The final results will be the best output of n_runs consecutive runs in terms of inertia
    /// (sum of squared distances to the closest centroid for all observations in the training
    /// set).  For incremental K-means, only the initialization algorithm will be run multiple
    /// times to pick the best starting centroids.
    pub fn n_runs(mut self, n_runs: usize) -> Self {
        self.n_runs = n_runs;
        self
    }

    /// Set the value of `max_n_iterations`.
    ///
    /// We exit the training loop when the number of training iterations
    /// exceeds `max_n_iterations` even if the `tolerance` convergence
    /// condition has not been met. Not used when training incrementally.
    pub fn max_n_iterations(mut self, max_n_iterations: u64) -> Self {
        self.max_n_iterations = max_n_iterations;
        self
    }

    /// Set the value of `tolerance`.
    ///
    /// The training is considered complete if the euclidean distance
    /// between the old set of centroids and the new set of centroids
    /// after a training iteration is lower or equal than `tolerance`.
    pub fn tolerance(mut self, tolerance: F) -> Self {
        self.tolerance = tolerance;
        self
    }

    /// Set the value of `init`.
    ///
    /// The initialization method is the function that determines the initial values of the cluster
    /// centroids before the iterative training process. The default value is `KMeansPlusPlus`.
    pub fn init_method(mut self, init: KMeansInit<F>) -> Self {
        self.init = init;
        self
    }

    /// Return an instance of `KMeansHyperParams` after
    /// having performed validation checks on all the specified hyperparameters.
    ///
    /// **Panics** if any of the validation checks fails.
    pub fn build(self) -> KMeansHyperParams<F, R> {
        KMeansHyperParams::build(
            self.n_clusters,
            self.n_runs,
            self.tolerance,
            self.max_n_iterations,
            self.init,
            self.rng,
        )
    }
}

impl<F: Float> KMeansHyperParams<F, Isaac64Rng> {
    pub fn new(n_clusters: usize) -> KMeansHyperParamsBuilder<F, Isaac64Rng> {
        Self::new_with_rng(n_clusters, Isaac64Rng::seed_from_u64(42))
    }
}

impl<F: Float, R: Rng + Clone> KMeansHyperParams<F, R> {
    /// `new` lets us configure our training algorithm parameters:
    /// * we will be looking for `n_clusters` in the training dataset;
    /// * the training is considered complete if the euclidean distance
    ///   between the old set of centroids and the new set of centroids
    ///   after a training iteration is lower or equal than `tolerance`;
    /// * we exit the training loop when the number of training iterations
    ///   exceeds `max_n_iterations` even if the `tolerance` convergence
    ///   condition has not been met.
    /// * As KMeans convergence depends on centroids initialization
    ///   we run the algorithm `n_runs` times and we keep the best outputs
    ///   in terms of inertia that the ones which minimizes the sum of squared
    ///   euclidean distances to the closest centroid for all observations.
    ///
    /// `n_clusters` is mandatory.
    ///
    /// Defaults are provided if optional parameters are not specified:
    /// * `tolerance = 1e-4`;
    /// * `max_n_iterations = 300`.

    pub fn new_with_rng(n_clusters: usize, rng: R) -> KMeansHyperParamsBuilder<F, R> {
        KMeansHyperParamsBuilder {
            n_runs: 10,
            tolerance: F::cast(1e-4),
            max_n_iterations: 300,
            n_clusters,
            init: KMeansInit::KMeansPlusPlus,
            rng,
        }
    }

    /// The final results will be the best output of n_runs consecutive runs in terms of inertia.
    pub fn n_runs(&self) -> usize {
        self.n_runs
    }

    /// The training is considered complete if the euclidean distance
    /// between the old set of centroids and the new set of centroids
    /// after a training iteration is lower or equal than `tolerance`.
    pub fn tolerance(&self) -> F {
        self.tolerance
    }

    /// We exit the training loop when the number of training iterations
    /// exceeds `max_n_iterations` even if the `tolerance` convergence
    /// condition has not been met.
    pub fn max_n_iterations(&self) -> u64 {
        self.max_n_iterations
    }

    /// The number of clusters we will be looking for in the training dataset.
    pub fn n_clusters(&self) -> usize {
        self.n_clusters
    }

    /// Cluster initialization strategy
    pub fn init_method(&self) -> &KMeansInit<F> {
        &self.init
    }

    /// Returns a clone of the random generator
    pub fn rng(&self) -> R {
        self.rng.clone()
    }

    fn build(
        n_clusters: usize,
        n_runs: usize,
        tolerance: F,
        max_n_iterations: u64,
        init: KMeansInit<F>,
        rng: R,
    ) -> Self {
        if n_runs == 0 {
            panic!("`n_runs` cannot be 0!");
        }
        if max_n_iterations == 0 {
            panic!("`max_n_iterations` cannot be 0!");
        }
        if tolerance <= F::zero() {
            panic!("`tolerance` must be greater than 0!");
        }
        if n_clusters == 0 {
            panic!("`n_clusters` cannot be 0!");
        }
        KMeansHyperParams {
            n_runs,
            tolerance,
            max_n_iterations,
            n_clusters,
            init,
            rng,
        }
    }
}