lineic/interpolator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
use crate::{number::Numeric, InterpolationBucket, ReversibleRange};
use std::borrow::Cow;
/// A linear interpolator for a set of values.
/// Interpolates between a series of discrete value sets based on a range.
///
/// For example a traffic light system could be represented as:
/// ```rust
/// use lineic::LinearInterpolator;
///
/// const RED: [u8; 3] = [0xB8, 0x1D, 0x13];
/// const YLW: [u8; 3] = [0xEF, 0xB7, 0x00];
/// const GRN: [u8; 3] = [0x00, 0x84, 0x50];
///
/// let interpolator = LinearInterpolator::new(0.0..=100.0, &[RED, YLW, GRN]);
///
/// /*
/// The result will be a linear interpolation between:
/// 0..=50 => RED->YLW
/// 50..=100 => YLW->GRN
/// */
/// ```
///
/// # Generics
/// This type has 3 generics:
/// - N: The number of values in each set
/// - S: The numeric type representing the range for inputs
/// - T: The numeric type representing the values to interpolate between
///
/// `S` and `T` can be any type implementing the [`Numeric`] trait.
///
#[derive(Debug, PartialEq, Clone)]
pub struct LinearInterpolator<'a, const N: usize, S: Numeric, T: Numeric> {
buckets: Cow<'a, [InterpolationBucket<N, S, T>]>,
}
impl<'a, const N: usize, S: Numeric, T: Numeric> LinearInterpolator<'a, N, S, T> {
/// Create a new linear interpolator with the given range and value sets.
/// The provided range will be divided into equal segments based on the number of value sets.
///
/// # Panics
/// Panics if the number of value sets is too large to be represented by type S
/// For a non-panic variant, see [`Self::try_new`]
pub fn new(range: impl Into<ReversibleRange<S>>, value_sets: &[[T; N]]) -> Self {
Self::try_new(range, value_sets)
.expect("Number of value sets too large to fit in type `S` - Reduce the number of data sets or use a larger type for `range`")
}
/// Create a new linear interpolator with the given range and value sets.
/// The provided range will be divided into equal segments based on the number of value sets.
///
/// Returns None if the number of value sets is too large to be represented by type S.
/// This is the non-panic variant of [`Self::new`]
pub fn try_new(range: impl Into<ReversibleRange<S>>, value_sets: &[[T; N]]) -> Option<Self> {
let range = range.into();
if value_sets.is_empty() {
let buckets = Cow::Owned(vec![InterpolationBucket::new(
range,
[T::ZERO; N],
[T::ZERO; N],
)]);
return Some(Self { buckets });
}
let capacity = value_sets.len() - 1;
let mut buckets = Vec::with_capacity(capacity);
// Noop interpolation
if capacity == 0 {
let values = value_sets[0];
buckets.push(InterpolationBucket::new(range, values, values));
let buckets = Cow::Owned(buckets);
return Some(Self { buckets });
}
let len = range.start.abs_diff(range.end);
let step_by = len.checked_div(S::from_usize(capacity)?)?;
let mut start = range.start;
for i in 0..capacity {
let is_last = i == value_sets.len() - 2;
let end = if is_last {
range.end
} else if range.is_reversed() {
start.checked_sub(step_by).unwrap_or(S::ZERO)
} else {
start.checked_add(step_by).unwrap_or(S::MAX)
};
let range = start..=end;
let values_lo = value_sets[i];
let values_hi = value_sets[i + 1];
buckets.push(InterpolationBucket::new(range, values_lo, values_hi));
start = end;
}
let buckets = Cow::Owned(buckets);
Some(Self { buckets })
}
/// Create a new linear interpolator from a raw slice of buckets.
///
/// Primarily used for static or const interpolators.
///
/// Another way to create a const interpolator is with the [`static_interpolator!`] macro.
///
/// # Example
/// ```rust
/// use lineic::{InterpolationBucket, LinearInterpolator};
/// const INTERPOLATOR: LinearInterpolator<3, f32, f32> = LinearInterpolator::new_from_raw(&[
/// InterpolationBucket::new_const((0.0, 50.0), [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
/// InterpolationBucket::new_const((50.0, 100.0), [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]),
/// ]);
/// ```
///
/// # Safety
/// Results will be unpredictable if the following are not enforced:
/// - The range for the buckets must form a continuous range
/// - The buckets must be sorted by range
pub const fn new_from_raw(buckets: &'a [InterpolationBucket<N, S, T>]) -> Self {
let buckets = Cow::Borrowed(buckets);
Self { buckets }
}
/// Returns true if the range for this interpolator has start > end
#[must_use]
pub fn is_reversed(&self) -> bool {
self.buckets()
.first()
.is_some_and(|b| b.range().is_reversed())
}
/// Get the set of discrete interpolations this interpolator will use.
#[must_use]
pub fn buckets(&self) -> &[InterpolationBucket<N, S, T>] {
&self.buckets
}
/// Returns the bucket that contains the given value.
pub fn get_bucket(&self, s: S) -> &InterpolationBucket<N, S, T> {
let rev = self.is_reversed();
let mut slice = self.buckets();
// Binary search for the bucket that contains the value
while slice.len() > 1 {
let mid = slice.len() / 2;
let mid_bucket = &slice[mid];
if mid_bucket.range().contains(s) {
return mid_bucket;
}
if (!rev && s >= mid_bucket.start()) || (rev && s <= mid_bucket.start()) {
slice = &slice[mid..];
} else {
slice = &slice[..mid];
}
}
&slice[0]
}
/// Interpolate between the value sets based on the given value.
/// This will return a new set of values interpolated across the given range
///
/// Uses a binary search to locate the appropriate pair of values to interpolate between
pub fn interpolate(&self, s: S) -> [T; N] {
let bucket = self.get_bucket(s);
bucket.interpolate(s)
}
/// Attempt to find a value in the valid range that could produce the given set of values.
///
/// This may be slow, since all buckets may be checked
pub fn reverse_interpolate(&self, values: &[T; N]) -> Option<S> {
for bucket in self.buckets() {
if let Some(s) = bucket.reverse_interpolate(values) {
return Some(s);
}
}
None
}
}
/// A macro to create a static linear interpolator.
/// This macro is a convenience wrapper around [`LinearInterpolator::new_from_raw`].
///
/// # Example
/// ```rust
/// use lineic::{static_interpolator, LinearInterpolator};
///
/// const MY_INTERPOLATOR: LinearInterpolator<3, f32, f32> = static_interpolator! {
/// 0.0..=50.0 => [0.0, 0.0, 0.0]..[1.0, 1.0, 1.0],
/// 50.0..=100.0 => [1.0, 1.0, 1.0]..[2.0, 2.0, 2.0]
/// };
/// ```
#[macro_export]
macro_rules! static_interpolator {
($(
$from:literal ..= $to:literal => [$($values_from:expr),+]..[$($values_to:expr),+]
),+) => {
$crate::LinearInterpolator::new_from_raw(&[
$(
$crate::InterpolationBucket::new_const(
($from, $to),
[$($values_from),+],
[$($values_to),+]
)
),+
])
};
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[allow(clippy::float_cmp)]
#[allow(clippy::unreadable_literal)]
fn test_new() {
let interpolator =
LinearInterpolator::new(0.0..=100.0, &[[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]]);
assert_eq!(interpolator.buckets().len(), 2);
assert_eq!(
interpolator.buckets()[0],
InterpolationBucket::new(0.0..=50.0, [0.0, 0.0], [1.0, 1.0])
);
assert_eq!(
interpolator.buckets()[1],
InterpolationBucket::new(50.0..=100.0, [1.0, 1.0], [2.0, 2.0])
);
let interpolator = LinearInterpolator::new(
100.0..=0.0,
&[[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]],
);
assert_eq!(interpolator.buckets().len(), 3);
assert_eq!(
interpolator.buckets()[0],
InterpolationBucket::new(100.0..=66.66666666666666, [0.0, 0.0], [1.0, 1.0])
);
let empty = LinearInterpolator::<0, f64, f64>::new(0.0..=0.0, &[]);
assert_eq!(empty.interpolate(0.0), []);
}
#[test]
#[allow(clippy::unreadable_literal)]
fn test_get_bucket() {
let interpolator =
LinearInterpolator::new(0.0..=100.0, &[[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]]);
assert_eq!(
interpolator.get_bucket(0.0),
&InterpolationBucket::new(0.0..=50.0, [0.0, 0.0], [1.0, 1.0])
);
assert_eq!(
interpolator.get_bucket(50.0),
&InterpolationBucket::new(50.0..=100.0, [1.0, 1.0], [2.0, 2.0])
);
assert_eq!(
interpolator.get_bucket(100.0),
&InterpolationBucket::new(50.0..=100.0, [1.0, 1.0], [2.0, 2.0])
);
let interpolator = LinearInterpolator::new(
100.0..=0.0,
&[[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]],
);
assert_eq!(
interpolator.get_bucket(100.0),
&InterpolationBucket::new(100.0..=66.66666666666666, [0.0, 0.0], [1.0, 1.0])
);
assert_eq!(
interpolator.get_bucket(20.0),
&InterpolationBucket::new(33.33333333333332..=0.0, [2.0, 2.0], [3.0, 3.0])
);
}
}