1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
//! Set of traits to abstract over linear algebra types.
//!
//! Provides an abstraction over vector-like types. This makes it easier to
//! implement generic math algorithms.
//!
//! # Example
//! ```
//! use linear_isomorphic::*;
//!
//! pub fn point_segment_distance<Vec>(start: &Vec, end: &Vec, point: &Vec) -> f32
//! where
//! Vec: VectorLike<Scalar = f32>,
//! {
//! let dir = *end - *start;
//! let t = (*point - *start).dot(&dir) / dir.norm_squared();
//!
//! let t = t.clamp(0.0, 1.0);
//!
//! let closest = *start + dir * t;
//!
//! (closest - *point).norm()
//! }
//! ```
use std::fmt::{Debug, Display};
use std::ops::{
Add,
AddAssign,
Div,
DivAssign,
Index,
IndexMut,
Mul,
MulAssign,
Neg,
Sub,
SubAssign,
};
use num::Float;
/// Trait representing a type isomorphic to a lin alg vector in the most basic
/// sense. That is, it supports addition and scalar multiplication. Useful to
/// write functions that work on arithmetic types.
pub trait LinAlg<S>:
Mul<S, Output = Self>
+ Add<Output = Self>
+ AddAssign<Self>
+ Sub<Output = Self>
+ Div<S, Output = Self>
+ Neg
+ Copy // Consider removing this one out and only requiring clone.
+ Sized
where S: num::Float + AddAssign
{
}
impl<T, S> LinAlg<S> for T
where
T: Mul<S, Output = Self>
+ Add<Output = Self>
+ AddAssign<Self>
+ Sub<Output = Self>
+ Div<S, Output = Self>
+ Neg
+ Copy
+ Sized,
S: Mul<T, Output = T>,
S: num::Float + AddAssign,
{
}
/// Trait representing a type which can be multiplied by, i.e. a scalar.
pub trait ScalarLike:
Display
+ Debug
+ Default
+ AddAssign
+ Float
+ DivAssign
+ SubAssign
+ MulAssign
+ num::Float
+ 'static
{
}
impl<T> ScalarLike for T where
T: Display
+ Debug
+ Default
+ AddAssign
+ Float
+ DivAssign
+ SubAssign
+ MulAssign
+ num::Float
+ 'static
{
}
/// Extension of the `LinAlg` trait. It also demands that the type is indexable
/// and can be default initialized (default initialization is assumed to be
/// equivalent to the 0 vector).
/// Additionally, provides methods common to vectors.
pub trait VectorLike:
LinAlg<Self::Scalar>
+ Index<usize, Output = Self::Scalar>
+ IndexMut<usize, Output = Self::Scalar>
+ Default
{
type Scalar: ScalarLike;
/// Get a unit vector in the same direction as this one. Can produce
/// NAN's.
fn normalized(&self) -> Self;
/// Get the current norm/length of this vector.
fn norm(&self) -> Self::Scalar;
/// Get the squared norm of the vector, this is faster than getting the norm
/// in most cases.
fn norm_squared(&self) -> Self::Scalar;
/// Inner product between two vectors.
fn dot(&self, other: &Self) -> Self::Scalar;
/// Total number of components in thsi vector. Its dimension.
fn len(&self) -> usize;
/// Compute the cross product of two vetors. Call only if both vectors are
/// three dimensional.
fn cross(&self, other: &Self) -> Self;
}
/// Blank implementation for a type that is isomorphic to a vector.
impl<T, S> VectorLike for T
where
T: LinAlg<S> + Index<usize, Output = S> + IndexMut<usize, Output = S> + Default,
S: ScalarLike,
{
type Scalar = S;
fn norm(&self) -> S { self.norm_squared().sqrt() }
fn norm_squared(&self) -> S { self.dot(&self) }
fn normalized(&self) -> Self { *self / self.norm() }
fn dot(&self, other: &Self) -> S
{
debug_assert!(self.len() == other.len());
let mut result = S::from(0.0).unwrap();
for element in 0..self.len()
{
result += self[element] * other[element];
}
result
}
/// Assumes a 3-dimensional vector.
fn cross(&self, other: &Self) -> Self
{
debug_assert!(self.len() == 3);
let mut result = *self * S::from(0.0).unwrap();
result[0] = self[1] * other[2] - self[2] * other[1];
result[1] = self[2] * other[0] - self[0] * other[2];
result[2] = self[0] * other[1] - self[1] * other[0];
result
}
fn len(&self) -> usize
{
use std::mem;
mem::size_of::<Self>() / mem::size_of::<S>()
}
}