linear_predictive_coding/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// use ndarray::prelude::*;
// use ndarray_inverse::Inverse;
// /// 自己相関関数を求める関数
// /// # Arguments
// /// [;N]
// ///
// /// # Returns
// /// [;N]
// pub fn correlate(a: ArrayView1<f64>) -> Array1<f64> {
// a.iter()
// .enumerate()
// .map(|(n, _)| {
// a.slice(s![n..])
// .iter()
// .zip(a.iter())
// .map(|(x, y)| x * y)
// .sum::<f64>()
// })
// .collect()
// }
// pub fn calc_lpc_by_low_speed(a: ArrayView1<f64>, depth: usize) -> Array1<f64> {
// let r = correlate(a);
// let mut large_r: Array2<f64> = Array2::zeros((depth, depth));
// for i in 0..depth {
// for j in 0..depth {
// large_r[[i, j]] = r[(i as isize - j as isize).abs() as usize];
// }
// }
// println!("{:?}", large_r);
// let r = r.slice(s![1..=depth]);
// println!("{:?}", r);
// let inverse_large_r = large_r.inv().unwrap();
// let a = inverse_large_r.dot(&r);
// let minus_a = a.mapv(|x| -x);
// minus_a
// }
// /// https://qiita.com/hirokisince1998/items/fd50c0515c7788458fce
// /// Levinson-Durbin法
// pub fn calc_lpc_by_high_speed(a: ArrayView1<f64>, depth: usize) -> Array1<f64> {
// let r = correlate(a);
// println!("{:?}", r);
// let r = r.slice(s![..=depth]);
// println!("{:?}", r);
// fn calc_lpc_by_high_speed_inner(
// a: ArrayView1<f64>,
// depth: usize,
// r: ArrayView1<f64>,
// ) -> (Array1<f64>, f64) {
// if depth == 1 {
// let a = Array1::from_iter(vec![1.0, -r[1] as f64 / r[0]]);
// let e = a.dot(&r.slice(s![..2]));
// // println!("{:?}", a);
// (a, e)
// } else {
// let (aa, ee) = calc_lpc_by_high_speed_inner(a, depth - 1, r);
// let kk = -aa.dot(&r.slice(s![1..=depth; -1])) / ee;
// let large_u = ndarray::concatenate![Axis(0), aa.view(), Array1::from_elem(1, 0.0)];
// let large_v = large_u.slice(s![..; -1]);
// let a = large_u.clone() + large_v.mapv(|x| x * kk);
// let e = ee * (1.0 - kk * kk);
// (a, e)
// }
// }
// let (a, _) = calc_lpc_by_high_speed_inner(a, depth, r.view());
// a.slice_move(s![1..])
// }
// /// Burg法
// pub fn calc_lpc_by_burg(x: ArrayView1<f64>, depth: usize) -> Array1<f64> {
// let mut a = Array1::<f64>::zeros(depth + 1);
// let mut k = Array1::<f64>::zeros(depth);
// a[0] = 1.0;
// let mut f = x.to_owned();
// let mut b = x.to_owned();
// let n = x.len();
// for p in 0..depth {
// let kf = f.slice(s![p + 1..]);
// let kb = b.slice(s![..n - p - 1]);
// // 要素ごとの積
// let d = kf.iter().map(|x| x * x).sum::<f64>() + kb.iter().map(|x| x * x).sum::<f64>();
// k[p] = -2.0 * kf.iter().zip(kb.iter()).map(|(x, y)| x * y).sum::<f64>() / d;
// let u = a.slice(s![..=p + 1]);
// let v = u.slice(s![..; -1]);
// println!("u: {:?}", u);
// println!("v: {:?}", v);
// let added = &u + &v.mapv(|x| x * k[p]);
// a.slice_mut(s![..=p + 1]).assign(&added.view());
// let fu = b.slice(s![..n - p - 1]).mapv(|x| x * k[p]);
// let bu = f.slice(s![p + 1..]).mapv(|x| x * k[p]);
// f.slice_mut(s![p + 1..])
// .iter_mut()
// .zip(fu.iter())
// .for_each(|(x, fu)| *x += *fu);
// b.slice_mut(s![..n - p - 1])
// .iter_mut()
// .zip(bu.iter())
// .for_each(|(x, bu)| *x += bu);
// }
// a.slice_move(s![1..])
// }
// #[cfg(test)]
// mod tests {
// use super::*;
// #[test]
// fn test_correlate() {
// let a = Array1::from(vec![2., 3., -1., -2., 1., 4., 1.]);
// let expected = Array1::from(vec![36.0, 11.0, -16.0, -7.0, 13.0, 11.0, 2.0]);
// assert_eq!(correlate(a.view()), expected);
// }
// #[test]
// fn test_calc_lpc_by_low_speed() {
// let a = Array1::from(vec![2., 3., -1., -2., 1., 4., 1.]);
// let depth = 3;
// let expected = Array1::from(vec![
// -0.6919053749597682,
// 0.7615062761506275,
// -0.34575152880592214,
// ]);
// assert_eq!(calc_lpc_by_low_speed(a.view(), depth), expected);
// }
// #[test]
// fn test_calc_lpc_by_high_speed() {
// let a = Array1::from(vec![2., 3., -1., -2., 1., 4., 1.]);
// let depth = 3;
// let expected = Array1::from(vec![
// -0.6919053749597684,
// 0.7615062761506278,
// -0.3457515288059223,
// ]);
// assert_eq!(calc_lpc_by_high_speed(a.view(), depth), expected);
// }
// #[test]
// fn test_calc_lpc_by_burg() {
// let a = Array1::from(vec![2., 3., -1., -2., 1., 4., 1.]);
// let depth = 3;
// let expected = Array1::from(vec![
// -1.0650404360323664,
// 1.157238171254371,
// -0.5771692748969812,
// ]);
// assert_eq!(calc_lpc_by_burg(a.view(), depth), expected);
// }
// }