1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
extern crate nalgebra as na;

use na::{OMatrix, OVector, DMatrix, DVector, Scalar, Dim, DimName, default_allocator::DefaultAllocator, allocator::Allocator, convert, RealField, DimMin, DimSub, Const};


/**
 * A is Dim(MxN), x,c,s are Dim(N), y,b are Dim(M)
 * Returns (x (primal), y (dual))
 */
#[allow(non_snake_case)]
pub fn solve<T, M, N>(A: &OMatrix<T,M,N>, b: &OVector<T,M>, c: &OVector<T,N>, eps: T, theta: T, gamma: T, max_it: usize) -> (OVector<T, N>,OVector<T,M>) 
    where 
        T: Scalar + RealField + Copy, 
        M: Dim + DimName + DimMin<M, Output = M> + DimSub<Const<1>>, 
        N: Dim + DimName + DimMin<N, Output = N>,
        DefaultAllocator: Allocator<T, M> + Allocator<T, M, N> + Allocator<T, N, M> + Allocator<T, N, N> + Allocator<T, N> + Allocator<T, M, M> + Allocator<(T, usize), M> + Allocator<(usize, usize), M> + Allocator<T, <M as DimSub<Const<1>>>::Output>  {
    let one: T = convert(1.0);
    let max_val = T::max_value().unwrap();
    let svd_eps: T = convert(1e-20);

    let A_transpose = A.transpose();
    let mut gamma_mu = OVector::<T,N>::from_element(one);
    let mut x = OVector::<T,N>::from_element(one);
    let mut s = OVector::<T,N>::from_element(one);
    let mut y = OVector::<T,M>::zeros();
    let mut r_primal = OVector::<T,M>::from_element(max_val);
    let mut r_dual = OVector::<T,N>::from_element(max_val);
    let mut k = 0;
    let mut S_inv = OMatrix::<T,N,N>::zeros();
    let mut X = OMatrix::<T,N,N>::zeros();
    let n : T = convert(N::USIZE as f64);

    while k < max_it && (r_primal.norm() > eps || r_dual.norm() > eps || x.dot(&s) > eps) {
        r_primal = b - A*(&x);
        r_dual = c - (&A_transpose)*(&y) - (&s);
        let mu = x.dot(&s)/n;
        for i in 0..N::USIZE {
            S_inv[(i,i)] = one/s[i];
            X[(i,i)] = x[i];
            gamma_mu[i] = gamma*mu;
        }
        let M = A*(&S_inv)*(&X)*(&A_transpose);
        let r = b + A*(&S_inv)*((&X)*(&r_dual) - (&gamma_mu));
        let d_y = M.svd(true,true).solve(&r, svd_eps).expect("direction y failed");
        let d_s = (&r_dual) - (&A_transpose)*(&d_y);
        let d_x = -(&x) + (&S_inv)*((&gamma_mu)-(&X)*(&d_s));

        let mut step_primal = max_val;
        let mut step_dual = max_val;

        for i in 0..N::USIZE {
            let dx_i = d_x[i];
            let ds_i = d_s[i];

            if dx_i < T::zero() {
                let v = -x[i]/dx_i;
                step_primal = step_primal.min(v);
            }

            if ds_i < T::zero() {
                let v = -s[i]/ds_i;
                step_dual = step_dual.min(v);
            }
        }

        let step_max = step_primal.min(step_dual);
        let step = one.min(theta*step_max);

        x = x+d_x.scale(step);
        y = y+d_y.scale(step);
        s = s+d_s.scale(step);
        k = k+1;
    }
   
    (x,y)
}

#[allow(non_snake_case)]
pub fn solve_dyn<T>(A: &DMatrix<T>, b: &DVector<T>, c: &DVector<T>, eps: T, theta: T, gamma: T, max_it: usize) -> (DVector<T>, DVector<T>) 
    where T: Scalar + RealField + Copy{
    let one: T = convert(1.0);
    let max_val = T::max_value().unwrap();
    let svd_eps: T = convert(1e-20);
    let N = A.ncols();
    let M = A.nrows();

    let A_transpose = A.transpose();
    let mut gamma_mu = DVector::<T>::from_element(N, one);
    let mut x = DVector::<T>::from_element(N, one);
    let mut s = DVector::<T>::from_element(N, one);
    let mut y = DVector::<T>::zeros(M);
    let mut r_primal = DVector::<T>::from_element(M, max_val);
    let mut r_dual = DVector::<T>::from_element(N, max_val);
    let mut k = 0;
    let mut S_inv = DMatrix::<T>::zeros(N,N);
    let mut X = DMatrix::<T>::zeros(N,N);
    let n : T = convert(N as f64);

    while k < max_it && (r_primal.norm() > eps || r_dual.norm() > eps || x.dot(&s) > eps) {
        r_primal = b - A*(&x);
        r_dual = c - (&A_transpose)*(&y) - (&s);
        let mu = x.dot(&s)/n;
        for i in 0..N {
            S_inv[(i,i)] = one/s[i];
            X[(i,i)] = x[i];
            gamma_mu[i] = gamma*mu;
        }
        let M = A*(&S_inv)*(&X)*(&A_transpose);
        let r = b + A*(&S_inv)*((&X)*(&r_dual) - (&gamma_mu));
        let d_y = M.svd(true,true).solve(&r, svd_eps).expect("direction y failed");
        let d_s = (&r_dual) - (&A_transpose)*(&d_y);
        let d_x = -(&x) + (&S_inv)*((&gamma_mu)-(&X)*(&d_s));

        let mut step_primal = max_val;
        let mut step_dual = max_val;

        for i in 0..N {
            let dx_i = d_x[i];
            let ds_i = d_s[i];

            if dx_i < T::zero() {
                let v = -x[i]/dx_i;
                step_primal = step_primal.min(v);
            }

            if ds_i < T::zero() {
                let v = -s[i]/ds_i;
                step_dual = step_dual.min(v);
            }
        }

        let step_max = step_primal.min(step_dual);
        let step = one.min(theta*step_max);

        x = x+d_x.scale(step);
        y = y+d_y.scale(step);
        s = s+d_s.scale(step);
        k = k+1;
    }
   
    (x,y)
}