lightning/routing/
scoring.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Utilities for scoring payment channels.
//!
//! [`ProbabilisticScorer`] may be given to [`find_route`] to score payment channels during path
//! finding when a custom [`ScoreLookUp`] implementation is not needed.
//!
//! # Example
//!
//! ```
//! # extern crate bitcoin;
//! #
//! # use lightning::routing::gossip::NetworkGraph;
//! # use lightning::routing::router::{RouteParameters, find_route};
//! # use lightning::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters};
//! # use lightning::sign::KeysManager;
//! # use lightning::util::logger::{Logger, Record};
//! # use bitcoin::secp256k1::PublicKey;
//! #
//! # struct FakeLogger {};
//! # impl Logger for FakeLogger {
//! #     fn log(&self, record: Record) { unimplemented!() }
//! # }
//! # fn find_scored_route(payer: PublicKey, route_params: RouteParameters, network_graph: NetworkGraph<&FakeLogger>) {
//! # let logger = FakeLogger {};
//! #
//! // Use the default channel penalties.
//! let params = ProbabilisticScoringFeeParameters::default();
//! let decay_params = ProbabilisticScoringDecayParameters::default();
//! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
//!
//! // Or use custom channel penalties.
//! let params = ProbabilisticScoringFeeParameters {
//! 	liquidity_penalty_multiplier_msat: 2 * 1000,
//! 	..ProbabilisticScoringFeeParameters::default()
//! };
//! let decay_params = ProbabilisticScoringDecayParameters::default();
//! let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
//! # let random_seed_bytes = [42u8; 32];
//!
//! let route = find_route(&payer, &route_params, &network_graph, None, &logger, &scorer, &params, &random_seed_bytes);
//! # }
//! ```
//!
//! [`find_route`]: crate::routing::router::find_route

use crate::ln::msgs::DecodeError;
use crate::routing::gossip::{DirectedChannelInfo, EffectiveCapacity, NetworkGraph, NodeId};
use crate::routing::router::{Path, CandidateRouteHop, PublicHopCandidate};
use crate::routing::log_approx;
use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer};
use crate::util::logger::Logger;

use crate::prelude::*;
use core::{cmp, fmt};
use core::ops::{Deref, DerefMut};
use core::time::Duration;
use crate::io::{self, Read};
use crate::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
#[cfg(not(c_bindings))]
use {
	core::cell::{RefCell, RefMut, Ref},
	crate::sync::{Mutex, MutexGuard},
};

/// We define Score ever-so-slightly differently based on whether we are being built for C bindings
/// or not. For users, `LockableScore` must somehow be writeable to disk. For Rust users, this is
/// no problem - you move a `Score` that implements `Writeable` into a `Mutex`, lock it, and now
/// you have the original, concrete, `Score` type, which presumably implements `Writeable`.
///
/// For C users, once you've moved the `Score` into a `LockableScore` all you have after locking it
/// is an opaque trait object with an opaque pointer with no type info. Users could take the unsafe
/// approach of blindly casting that opaque pointer to a concrete type and calling `Writeable` from
/// there, but other languages downstream of the C bindings (e.g. Java) can't even do that.
/// Instead, we really want `Score` and `LockableScore` to implement `Writeable` directly, which we
/// do here by defining `Score` differently for `cfg(c_bindings)`.
macro_rules! define_score { ($($supertrait: path)*) => {
/// An interface used to score payment channels for path finding.
///
/// `ScoreLookUp` is used to determine the penalty for a given channel.
///
/// Scoring is in terms of fees willing to be paid in order to avoid routing through a channel.
pub trait ScoreLookUp {
	/// A configurable type which should contain various passed-in parameters for configuring the scorer,
	/// on a per-routefinding-call basis through to the scorer methods,
	/// which are used to determine the parameters for the suitability of channels for use.
	type ScoreParams;
	/// Returns the fee in msats willing to be paid to avoid routing `send_amt_msat` through the
	/// given channel in the direction from `source` to `target`.
	///
	/// The channel's capacity (less any other MPP parts that are also being considered for use in
	/// the same payment) is given by `capacity_msat`. It may be determined from various sources
	/// such as a chain data, network gossip, or invoice hints. For invoice hints, a capacity near
	/// [`u64::max_value`] is given to indicate sufficient capacity for the invoice's full amount.
	/// Thus, implementations should be overflow-safe.
	fn channel_penalty_msat(
		&self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
	) -> u64;
}

/// `ScoreUpdate` is used to update the scorer's internal state after a payment attempt.
pub trait ScoreUpdate {
	/// Handles updating channel penalties after failing to route through a channel.
	fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);

	/// Handles updating channel penalties after successfully routing along a path.
	fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration);

	/// Handles updating channel penalties after a probe over the given path failed.
	fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration);

	/// Handles updating channel penalties after a probe over the given path succeeded.
	fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration);

	/// Scorers may wish to reduce their certainty of channel liquidity information over time.
	/// Thus, this method is provided to allow scorers to observe the passage of time - the holder
	/// of this object should call this method regularly (generally via the
	/// `lightning-background-processor` crate).
	fn time_passed(&mut self, duration_since_epoch: Duration);
}

/// A trait which can both lookup and update routing channel penalty scores.
///
/// This is used in places where both bounds are required and implemented for all types which
/// implement [`ScoreLookUp`] and [`ScoreUpdate`].
///
/// Bindings users may need to manually implement this for their custom scoring implementations.
pub trait Score : ScoreLookUp + ScoreUpdate $(+ $supertrait)* {}

#[cfg(not(c_bindings))]
impl<T: ScoreLookUp + ScoreUpdate $(+ $supertrait)*> Score for T {}

#[cfg(not(c_bindings))]
impl<S: ScoreLookUp, T: Deref<Target=S>> ScoreLookUp for T {
	type ScoreParams = S::ScoreParams;
	fn channel_penalty_msat(
		&self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
	) -> u64 {
		self.deref().channel_penalty_msat(candidate, usage, score_params)
	}
}

#[cfg(not(c_bindings))]
impl<S: ScoreUpdate, T: DerefMut<Target=S>> ScoreUpdate for T {
	fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		self.deref_mut().payment_path_failed(path, short_channel_id, duration_since_epoch)
	}

	fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		self.deref_mut().payment_path_successful(path, duration_since_epoch)
	}

	fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		self.deref_mut().probe_failed(path, short_channel_id, duration_since_epoch)
	}

	fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		self.deref_mut().probe_successful(path, duration_since_epoch)
	}

	fn time_passed(&mut self, duration_since_epoch: Duration) {
		self.deref_mut().time_passed(duration_since_epoch)
	}
}
} }

#[cfg(c_bindings)]
define_score!(Writeable);

#[cfg(not(c_bindings))]
define_score!();

/// A scorer that is accessed under a lock.
///
/// Needed so that calls to [`ScoreLookUp::channel_penalty_msat`] in [`find_route`] can be made while
/// having shared ownership of a scorer but without requiring internal locking in [`ScoreUpdate`]
/// implementations. Internal locking would be detrimental to route finding performance and could
/// result in [`ScoreLookUp::channel_penalty_msat`] returning a different value for the same channel.
///
/// [`find_route`]: crate::routing::router::find_route
pub trait LockableScore<'a> {
	/// The [`ScoreUpdate`] type.
	type ScoreUpdate: 'a + ScoreUpdate;
	/// The [`ScoreLookUp`] type.
	type ScoreLookUp: 'a + ScoreLookUp;

	/// The write locked [`ScoreUpdate`] type.
	type WriteLocked: DerefMut<Target = Self::ScoreUpdate> + Sized;

	/// The read locked [`ScoreLookUp`] type.
	type ReadLocked: Deref<Target = Self::ScoreLookUp> + Sized;

	/// Returns read locked scorer.
	fn read_lock(&'a self) -> Self::ReadLocked;

	/// Returns write locked scorer.
	fn write_lock(&'a self) -> Self::WriteLocked;
}

/// Refers to a scorer that is accessible under lock and also writeable to disk
///
/// We need this trait to be able to pass in a scorer to `lightning-background-processor` that will enable us to
/// use the Persister to persist it.
pub trait WriteableScore<'a>: LockableScore<'a> + Writeable {}

#[cfg(not(c_bindings))]
impl<'a, T> WriteableScore<'a> for T where T: LockableScore<'a> + Writeable {}
#[cfg(not(c_bindings))]
impl<'a, T: Score + 'a> LockableScore<'a> for Mutex<T> {
	type ScoreUpdate = T;
	type ScoreLookUp = T;

	type WriteLocked = MutexGuard<'a, Self::ScoreUpdate>;
	type ReadLocked = MutexGuard<'a, Self::ScoreLookUp>;

	fn read_lock(&'a self) -> Self::ReadLocked {
		Mutex::lock(self).unwrap()
	}

	fn write_lock(&'a self) -> Self::WriteLocked {
		Mutex::lock(self).unwrap()
	}
}

#[cfg(not(c_bindings))]
impl<'a, T: Score + 'a> LockableScore<'a> for RefCell<T> {
	type ScoreUpdate = T;
	type ScoreLookUp = T;

	type WriteLocked = RefMut<'a, Self::ScoreUpdate>;
	type ReadLocked = Ref<'a, Self::ScoreLookUp>;

	fn write_lock(&'a self) -> Self::WriteLocked {
		self.borrow_mut()
	}

	fn read_lock(&'a self) -> Self::ReadLocked {
		self.borrow()
	}
}

#[cfg(any(not(c_bindings), feature = "_test_utils", test))]
impl<'a, T: Score + 'a> LockableScore<'a> for RwLock<T> {
	type ScoreUpdate = T;
	type ScoreLookUp = T;

	type WriteLocked = RwLockWriteGuard<'a, Self::ScoreLookUp>;
	type ReadLocked = RwLockReadGuard<'a, Self::ScoreUpdate>;

	fn read_lock(&'a self) -> Self::ReadLocked {
		RwLock::read(self).unwrap()
	}

	fn write_lock(&'a self) -> Self::WriteLocked {
		RwLock::write(self).unwrap()
	}
}

#[cfg(c_bindings)]
/// A concrete implementation of [`LockableScore`] which supports multi-threading.
pub struct MultiThreadedLockableScore<T: Score> {
	score: RwLock<T>,
}

#[cfg(c_bindings)]
impl<'a, T: Score + 'a> LockableScore<'a> for MultiThreadedLockableScore<T> {
	type ScoreUpdate = T;
	type ScoreLookUp = T;
	type WriteLocked = MultiThreadedScoreLockWrite<'a, Self::ScoreUpdate>;
	type ReadLocked = MultiThreadedScoreLockRead<'a, Self::ScoreLookUp>;

	fn read_lock(&'a self) -> Self::ReadLocked {
		MultiThreadedScoreLockRead(self.score.read().unwrap())
	}

	fn write_lock(&'a self) -> Self::WriteLocked {
		MultiThreadedScoreLockWrite(self.score.write().unwrap())
	}
}

#[cfg(c_bindings)]
impl<T: Score> Writeable for MultiThreadedLockableScore<T> {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		self.score.read().unwrap().write(writer)
	}
}

#[cfg(c_bindings)]
impl<'a, T: Score + 'a> WriteableScore<'a> for MultiThreadedLockableScore<T> {}

#[cfg(c_bindings)]
impl<T: Score> MultiThreadedLockableScore<T> {
	/// Creates a new [`MultiThreadedLockableScore`] given an underlying [`Score`].
	pub fn new(score: T) -> Self {
		MultiThreadedLockableScore { score: RwLock::new(score) }
	}
}

#[cfg(c_bindings)]
/// A locked `MultiThreadedLockableScore`.
pub struct MultiThreadedScoreLockRead<'a, T: Score>(RwLockReadGuard<'a, T>);

#[cfg(c_bindings)]
/// A locked `MultiThreadedLockableScore`.
pub struct MultiThreadedScoreLockWrite<'a, T: Score>(RwLockWriteGuard<'a, T>);

#[cfg(c_bindings)]
impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockRead<'a, T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		self.0.deref()
	}
}

#[cfg(c_bindings)]
impl<'a, T: Score> ScoreLookUp for MultiThreadedScoreLockRead<'a, T> {
	type ScoreParams = T::ScoreParams;
	fn channel_penalty_msat(&self, candidate:&CandidateRouteHop, usage: ChannelUsage, score_params: &Self::ScoreParams
	) -> u64 {
		self.0.channel_penalty_msat(candidate, usage, score_params)
	}
}

#[cfg(c_bindings)]
impl<'a, T: Score> Writeable for MultiThreadedScoreLockWrite<'a, T> {
	fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
		self.0.write(writer)
	}
}

#[cfg(c_bindings)]
impl<'a, T: 'a + Score> Deref for MultiThreadedScoreLockWrite<'a, T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		self.0.deref()
	}
}

#[cfg(c_bindings)]
impl<'a, T: 'a + Score> DerefMut for MultiThreadedScoreLockWrite<'a, T> {
	fn deref_mut(&mut self) -> &mut Self::Target {
		self.0.deref_mut()
	}
}

#[cfg(c_bindings)]
impl<'a, T: Score> ScoreUpdate for MultiThreadedScoreLockWrite<'a, T> {
	fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		self.0.payment_path_failed(path, short_channel_id, duration_since_epoch)
	}

	fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		self.0.payment_path_successful(path, duration_since_epoch)
	}

	fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		self.0.probe_failed(path, short_channel_id, duration_since_epoch)
	}

	fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		self.0.probe_successful(path, duration_since_epoch)
	}

	fn time_passed(&mut self, duration_since_epoch: Duration) {
		self.0.time_passed(duration_since_epoch)
	}
}


/// Proposed use of a channel passed as a parameter to [`ScoreLookUp::channel_penalty_msat`].
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ChannelUsage {
	/// The amount to send through the channel, denominated in millisatoshis.
	pub amount_msat: u64,

	/// Total amount, denominated in millisatoshis, already allocated to send through the channel
	/// as part of a multi-path payment.
	pub inflight_htlc_msat: u64,

	/// The effective capacity of the channel.
	pub effective_capacity: EffectiveCapacity,
}

#[derive(Clone)]
/// [`ScoreLookUp`] implementation that uses a fixed penalty.
pub struct FixedPenaltyScorer {
	penalty_msat: u64,
}

impl FixedPenaltyScorer {
	/// Creates a new scorer using `penalty_msat`.
	pub fn with_penalty(penalty_msat: u64) -> Self {
		Self { penalty_msat }
	}
}

impl ScoreLookUp for FixedPenaltyScorer {
	type ScoreParams = ();
	fn channel_penalty_msat(&self, _: &CandidateRouteHop, _: ChannelUsage, _score_params: &Self::ScoreParams) -> u64 {
		self.penalty_msat
	}
}

impl ScoreUpdate for FixedPenaltyScorer {
	fn payment_path_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}

	fn payment_path_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}

	fn probe_failed(&mut self, _path: &Path, _short_channel_id: u64, _duration_since_epoch: Duration) {}

	fn probe_successful(&mut self, _path: &Path, _duration_since_epoch: Duration) {}

	fn time_passed(&mut self, _duration_since_epoch: Duration) {}
}

impl Writeable for FixedPenaltyScorer {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		write_tlv_fields!(w, {});
		Ok(())
	}
}

impl ReadableArgs<u64> for FixedPenaltyScorer {
	#[inline]
	fn read<R: Read>(r: &mut R, penalty_msat: u64) -> Result<Self, DecodeError> {
		read_tlv_fields!(r, {});
		Ok(Self { penalty_msat })
	}
}

/// [`ScoreLookUp`] implementation using channel success probability distributions.
///
/// Channels are tracked with upper and lower liquidity bounds - when an HTLC fails at a channel,
/// we learn that the upper-bound on the available liquidity is lower than the amount of the HTLC.
/// When a payment is forwarded through a channel (but fails later in the route), we learn the
/// lower-bound on the channel's available liquidity must be at least the value of the HTLC.
///
/// These bounds are then used to determine a success probability using the formula from
/// *Optimally Reliable & Cheap Payment Flows on the Lightning Network* by Rene Pickhardt
/// and Stefan Richter [[1]] (i.e. `(upper_bound - payment_amount) / (upper_bound - lower_bound)`).
///
/// This probability is combined with the [`liquidity_penalty_multiplier_msat`] and
/// [`liquidity_penalty_amount_multiplier_msat`] parameters to calculate a concrete penalty in
/// milli-satoshis. The penalties, when added across all hops, have the property of being linear in
/// terms of the entire path's success probability. This allows the router to directly compare
/// penalties for different paths. See the documentation of those parameters for the exact formulas.
///
/// The liquidity bounds are decayed by halving them every [`liquidity_offset_half_life`].
///
/// Further, we track the history of our upper and lower liquidity bounds for each channel,
/// allowing us to assign a second penalty (using [`historical_liquidity_penalty_multiplier_msat`]
/// and [`historical_liquidity_penalty_amount_multiplier_msat`]) based on the same probability
/// formula, but using the history of a channel rather than our latest estimates for the liquidity
/// bounds.
///
/// [1]: https://arxiv.org/abs/2107.05322
/// [`liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_multiplier_msat
/// [`liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_amount_multiplier_msat
/// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
/// [`historical_liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_multiplier_msat
/// [`historical_liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_amount_multiplier_msat
pub struct ProbabilisticScorer<G: Deref<Target = NetworkGraph<L>>, L: Deref>
where L::Target: Logger {
	decay_params: ProbabilisticScoringDecayParameters,
	network_graph: G,
	logger: L,
	channel_liquidities: HashMap<u64, ChannelLiquidity>,
}

/// Parameters for configuring [`ProbabilisticScorer`].
///
/// Used to configure base, liquidity, and amount penalties, the sum of which comprises the channel
/// penalty (i.e., the amount in msats willing to be paid to avoid routing through the channel).
///
/// The penalty applied to any channel by the [`ProbabilisticScorer`] is the sum of each of the
/// parameters here.
#[derive(Clone)]
pub struct ProbabilisticScoringFeeParameters {
	/// A fixed penalty in msats to apply to each channel.
	///
	/// In testing, a value of roughly 1/10th of [`historical_liquidity_penalty_multiplier_msat`]
	/// (implying scaling all estimated probabilities down by a factor of ~79%) resulted in the
	/// most accurate total success probabilities.
	///
	/// Default value: 1,024 msat (i.e. we're willing to pay 1 sat to avoid each additional hop).
	///
	/// [`historical_liquidity_penalty_multiplier_msat`]: Self::historical_liquidity_penalty_multiplier_msat
	pub base_penalty_msat: u64,

	/// A multiplier used with the payment amount to calculate a fixed penalty applied to each
	/// channel, in excess of the [`base_penalty_msat`].
	///
	/// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
	/// fees plus penalty) for large payments. The penalty is computed as the product of this
	/// multiplier and `2^30`ths of the payment amount.
	///
	/// ie `base_penalty_amount_multiplier_msat * amount_msat / 2^30`
	///
	/// In testing, a value of roughly ~100x (1/10th * 2^10) of
	/// [`historical_liquidity_penalty_amount_multiplier_msat`] (implying scaling all estimated
	/// probabilities down by a factor of ~79%) resulted in the most accurate total success
	/// probabilities.
	///
	/// Default value: 131,072 msat (i.e. we're willing to pay 0.125bps to avoid each additional
	///                              hop).
	///
	/// [`base_penalty_msat`]: Self::base_penalty_msat
	/// [`historical_liquidity_penalty_amount_multiplier_msat`]: Self::historical_liquidity_penalty_amount_multiplier_msat
	pub base_penalty_amount_multiplier_msat: u64,

	/// A multiplier used in conjunction with the negative `log10` of the channel's success
	/// probability for a payment, as determined by our latest estimates of the channel's
	/// liquidity, to determine the liquidity penalty.
	///
	/// The penalty is based in part on the knowledge learned from prior successful and unsuccessful
	/// payments. This knowledge is decayed over time based on [`liquidity_offset_half_life`]. The
	/// penalty is effectively limited to `2 * liquidity_penalty_multiplier_msat` (corresponding to
	/// lower bounding the success probability to `0.01`) when the amount falls within the
	/// uncertainty bounds of the channel liquidity balance. Amounts above the upper bound will
	/// result in a `u64::max_value` penalty, however.
	///
	/// `-log10(success_probability) * liquidity_penalty_multiplier_msat`
	///
	/// In testing, this scoring model performs much worse than the historical scoring model
	/// configured with the [`historical_liquidity_penalty_multiplier_msat`] and thus is disabled
	/// by default.
	///
	/// Default value: 0 msat
	///
	/// [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life
	/// [`historical_liquidity_penalty_multiplier_msat`]: Self::historical_liquidity_penalty_multiplier_msat
	pub liquidity_penalty_multiplier_msat: u64,

	/// A multiplier used in conjunction with the payment amount and the negative `log10` of the
	/// channel's success probability for the total amount flowing over a channel, as determined by
	/// our latest estimates of the channel's liquidity, to determine the amount penalty.
	///
	/// The purpose of the amount penalty is to avoid having fees dominate the channel cost (i.e.,
	/// fees plus penalty) for large payments. The penalty is computed as the product of this
	/// multiplier and `2^20`ths of the payment amount, weighted by the negative `log10` of the
	/// success probability.
	///
	/// `-log10(success_probability) * liquidity_penalty_amount_multiplier_msat * amount_msat / 2^20`
	///
	/// In practice, this means for 0.1 success probability (`-log10(0.1) == 1`) each `2^20`th of
	/// the amount will result in a penalty of the multiplier. And, as the success probability
	/// decreases, the negative `log10` weighting will increase dramatically. For higher success
	/// probabilities, the multiplier will have a decreasing effect as the negative `log10` will
	/// fall below `1`.
	///
	/// In testing, this scoring model performs much worse than the historical scoring model
	/// configured with the [`historical_liquidity_penalty_amount_multiplier_msat`] and thus is
	/// disabled by default.
	///
	/// Default value: 0 msat
	///
	/// [`historical_liquidity_penalty_amount_multiplier_msat`]: Self::historical_liquidity_penalty_amount_multiplier_msat
	pub liquidity_penalty_amount_multiplier_msat: u64,

	/// A multiplier used in conjunction with the negative `log10` of the channel's success
	/// probability for the payment, as determined based on the history of our estimates of the
	/// channel's available liquidity, to determine a penalty.
	///
	/// This penalty is similar to [`liquidity_penalty_multiplier_msat`], however, instead of using
	/// only our latest estimate for the current liquidity available in the channel, it estimates
	/// success probability based on the estimated liquidity available in the channel through
	/// history. Specifically, every time we update our liquidity bounds on a given channel, we
	/// track which of several buckets those bounds fall into, exponentially decaying the
	/// probability of each bucket as new samples are added.
	///
	/// Default value: 10,000 msat (i.e. willing to pay 1 sat to avoid an 80% probability channel,
	///                            or 6 sats to avoid a 25% probability channel).
	///
	/// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
	pub historical_liquidity_penalty_multiplier_msat: u64,

	/// A multiplier used in conjunction with the payment amount and the negative `log10` of the
	/// channel's success probability for the total amount flowing over a channel, as determined
	/// based on the history of our estimates of the channel's available liquidity, to determine a
	/// penalty.
	///
	/// The purpose of the amount penalty is to avoid having fees dominate the channel cost for
	/// large payments. The penalty is computed as the product of this multiplier and `2^20`ths
	/// of the payment amount, weighted by the negative `log10` of the success probability.
	///
	/// This penalty is similar to [`liquidity_penalty_amount_multiplier_msat`], however, instead
	/// of using only our latest estimate for the current liquidity available in the channel, it
	/// estimates success probability based on the estimated liquidity available in the channel
	/// through history. Specifically, every time we update our liquidity bounds on a given
	/// channel, we track which of several buckets those bounds fall into, exponentially decaying
	/// the probability of each bucket as new samples are added.
	///
	/// Default value: 1,250 msat (i.e. willing to pay about 0.125 bps per hop to avoid 78%
	///                            probability channels, or 0.5bps to avoid a 38% probability
	///                            channel).
	///
	/// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
	pub historical_liquidity_penalty_amount_multiplier_msat: u64,

	/// Manual penalties used for the given nodes. Allows to set a particular penalty for a given
	/// node. Note that a manual penalty of `u64::max_value()` means the node would not ever be
	/// considered during path finding.
	///
	/// This is not exported to bindings users
	pub manual_node_penalties: HashMap<NodeId, u64>,

	/// This penalty is applied when `htlc_maximum_msat` is equal to or larger than half of the
	/// channel's capacity, (ie. htlc_maximum_msat >= 0.5 * channel_capacity) which makes us
	/// prefer nodes with a smaller `htlc_maximum_msat`. We treat such nodes preferentially
	/// as this makes balance discovery attacks harder to execute, thereby creating an incentive
	/// to restrict `htlc_maximum_msat` and improve privacy.
	///
	/// Default value: 250 msat
	pub anti_probing_penalty_msat: u64,

	/// This penalty is applied when the total amount flowing over a channel exceeds our current
	/// estimate of the channel's available liquidity. The total amount is the amount of the
	/// current HTLC plus any HTLCs which we've sent over the same channel.
	///
	/// Note that in this case all other penalties, including the
	/// [`liquidity_penalty_multiplier_msat`] and [`liquidity_penalty_amount_multiplier_msat`]-based
	/// penalties, as well as the [`base_penalty_msat`] and the [`anti_probing_penalty_msat`], if
	/// applicable, are still included in the overall penalty.
	///
	/// If you wish to avoid creating paths with such channels entirely, setting this to a value of
	/// `u64::max_value()` will guarantee that.
	///
	/// Default value: 1_0000_0000_000 msat (1 Bitcoin)
	///
	/// [`liquidity_penalty_multiplier_msat`]: Self::liquidity_penalty_multiplier_msat
	/// [`liquidity_penalty_amount_multiplier_msat`]: Self::liquidity_penalty_amount_multiplier_msat
	/// [`base_penalty_msat`]: Self::base_penalty_msat
	/// [`anti_probing_penalty_msat`]: Self::anti_probing_penalty_msat
	pub considered_impossible_penalty_msat: u64,

	/// In order to calculate most of the scores above, we must first convert a lower and upper
	/// bound on the available liquidity in a channel into the probability that we think a payment
	/// will succeed. That probability is derived from a Probability Density Function for where we
	/// think the liquidity in a channel likely lies, given such bounds.
	///
	/// If this flag is set, that PDF is simply a constant - we assume that the actual available
	/// liquidity in a channel is just as likely to be at any point between our lower and upper
	/// bounds.
	///
	/// If this flag is *not* set, that PDF is `(x - 0.5*capacity) ^ 2`. That is, we use an
	/// exponential curve which expects the liquidity of a channel to lie "at the edges". This
	/// matches experimental results - most routing nodes do not aggressively rebalance their
	/// channels and flows in the network are often unbalanced, leaving liquidity usually
	/// unavailable.
	///
	/// Thus, for the "best" routes, leave this flag `false`. However, the flag does imply a number
	/// of floating-point multiplications in the hottest routing code, which may lead to routing
	/// performance degradation on some machines.
	///
	/// Default value: false
	pub linear_success_probability: bool,
}

impl Default for ProbabilisticScoringFeeParameters {
	fn default() -> Self {
		Self {
			base_penalty_msat: 1024,
			base_penalty_amount_multiplier_msat: 131_072,
			liquidity_penalty_multiplier_msat: 0,
			liquidity_penalty_amount_multiplier_msat: 0,
			manual_node_penalties: new_hash_map(),
			anti_probing_penalty_msat: 250,
			considered_impossible_penalty_msat: 1_0000_0000_000,
			historical_liquidity_penalty_multiplier_msat: 10_000,
			historical_liquidity_penalty_amount_multiplier_msat: 1_250,
			linear_success_probability: false,
		}
	}
}

impl ProbabilisticScoringFeeParameters {
	/// Marks the node with the given `node_id` as banned,
	/// i.e it will be avoided during path finding.
	pub fn add_banned(&mut self, node_id: &NodeId) {
		self.manual_node_penalties.insert(*node_id, u64::max_value());
	}

	/// Marks all nodes in the given list as banned, i.e.,
	/// they will be avoided during path finding.
	pub fn add_banned_from_list(&mut self, node_ids: Vec<NodeId>) {
		for id in node_ids {
			self.manual_node_penalties.insert(id, u64::max_value());
		}
	}

	/// Removes the node with the given `node_id` from the list of nodes to avoid.
	pub fn remove_banned(&mut self, node_id: &NodeId) {
		self.manual_node_penalties.remove(node_id);
	}

	/// Sets a manual penalty for the given node.
	pub fn set_manual_penalty(&mut self, node_id: &NodeId, penalty: u64) {
		self.manual_node_penalties.insert(*node_id, penalty);
	}

	/// Removes the node with the given `node_id` from the list of manual penalties.
	pub fn remove_manual_penalty(&mut self, node_id: &NodeId) {
		self.manual_node_penalties.remove(node_id);
	}

	/// Clears the list of manual penalties that are applied during path finding.
	pub fn clear_manual_penalties(&mut self) {
		self.manual_node_penalties = new_hash_map();
	}
}

#[cfg(test)]
impl ProbabilisticScoringFeeParameters {
	fn zero_penalty() -> Self {
		Self {
			base_penalty_msat: 0,
			base_penalty_amount_multiplier_msat: 0,
			liquidity_penalty_multiplier_msat: 0,
			liquidity_penalty_amount_multiplier_msat: 0,
			historical_liquidity_penalty_multiplier_msat: 0,
			historical_liquidity_penalty_amount_multiplier_msat: 0,
			manual_node_penalties: new_hash_map(),
			anti_probing_penalty_msat: 0,
			considered_impossible_penalty_msat: 0,
			linear_success_probability: true,
		}
	}
}

/// Parameters for configuring [`ProbabilisticScorer`].
///
/// Used to configure decay parameters that are static throughout the lifetime of the scorer.
/// these decay parameters affect the score of the channel penalty and are not changed on a
/// per-route penalty cost call.
#[derive(Copy, Clone)]
pub struct ProbabilisticScoringDecayParameters {
	/// If we aren't learning any new datapoints for a channel, the historical liquidity bounds
	/// tracking can simply live on with increasingly stale data. Instead, when a channel has not
	/// seen a liquidity estimate update for this amount of time, the historical datapoints are
	/// decayed by half.
	/// For an example of historical_no_updates_half_life being used see [`historical_estimated_channel_liquidity_probabilities`]
	///
	/// Note that after 16 or more half lives all historical data will be completely gone.
	///
	/// Default value: 14 days
	///
	/// [`historical_estimated_channel_liquidity_probabilities`]: ProbabilisticScorer::historical_estimated_channel_liquidity_probabilities
	pub historical_no_updates_half_life: Duration,

	/// Whenever this amount of time elapses since the last update to a channel's liquidity bounds,
	/// the distance from the bounds to "zero" is cut in half. In other words, the lower-bound on
	/// the available liquidity is halved and the upper-bound moves half-way to the channel's total
	/// capacity.
	///
	/// Because halving the liquidity bounds grows the uncertainty on the channel's liquidity,
	/// the penalty for an amount within the new bounds may change. See the [`ProbabilisticScorer`]
	/// struct documentation for more info on the way the liquidity bounds are used.
	///
	/// For example, if the channel's capacity is 1 million sats, and the current upper and lower
	/// liquidity bounds are 200,000 sats and 600,000 sats, after this amount of time the upper
	/// and lower liquidity bounds will be decayed to 100,000 and 800,000 sats.
	///
	/// Default value: 30 minutes
	///
	/// # Note
	///
	/// When not built with the `std` feature, time will never elapse. Therefore, the channel
	/// liquidity knowledge will never decay except when the bounds cross.
	pub liquidity_offset_half_life: Duration,
}

impl Default for ProbabilisticScoringDecayParameters {
	fn default() -> Self {
		Self {
			liquidity_offset_half_life: Duration::from_secs(30 * 60),
			historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
		}
	}
}

#[cfg(test)]
impl ProbabilisticScoringDecayParameters {
	fn zero_penalty() -> Self {
		Self {
			liquidity_offset_half_life: Duration::from_secs(30 * 60),
			historical_no_updates_half_life: Duration::from_secs(60 * 60 * 24 * 14),
		}
	}
}

/// Accounting for channel liquidity balance uncertainty.
///
/// Direction is defined in terms of [`NodeId`] partial ordering, where the source node is the
/// first node in the ordering of the channel's counterparties. Thus, swapping the two liquidity
/// offset fields gives the opposite direction.
#[repr(C)] // Force the fields in memory to be in the order we specify
struct ChannelLiquidity {
	/// Lower channel liquidity bound in terms of an offset from zero.
	min_liquidity_offset_msat: u64,

	/// Upper channel liquidity bound in terms of an offset from the effective capacity.
	max_liquidity_offset_msat: u64,

	liquidity_history: HistoricalLiquidityTracker,

	/// Time when either liquidity bound was last modified as an offset since the unix epoch.
	last_updated: Duration,

	/// Time when the historical liquidity bounds were last modified as an offset against the unix
	/// epoch.
	offset_history_last_updated: Duration,
}

// Check that the liquidity HashMap's entries sit on round cache lines.
//
// Specifically, the first cache line will have the key, the liquidity offsets, and the total
// points tracked in the historical tracker.
//
// The next two cache lines will have the historical points, which we only access last during
// scoring, followed by the last_updated `Duration`s (which we do not need during scoring).
const _LIQUIDITY_MAP_SIZING_CHECK: usize = 192 - ::core::mem::size_of::<(u64, ChannelLiquidity)>();
const _LIQUIDITY_MAP_SIZING_CHECK_2: usize = ::core::mem::size_of::<(u64, ChannelLiquidity)>() - 192;

/// A snapshot of [`ChannelLiquidity`] in one direction assuming a certain channel capacity.
struct DirectedChannelLiquidity<L: Deref<Target = u64>, HT: Deref<Target = HistoricalLiquidityTracker>, T: Deref<Target = Duration>> {
	min_liquidity_offset_msat: L,
	max_liquidity_offset_msat: L,
	liquidity_history: DirectedHistoricalLiquidityTracker<HT>,
	capacity_msat: u64,
	last_updated: T,
	offset_history_last_updated: T,
}

impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ProbabilisticScorer<G, L> where L::Target: Logger {
	/// Creates a new scorer using the given scoring parameters for sending payments from a node
	/// through a network graph.
	pub fn new(decay_params: ProbabilisticScoringDecayParameters, network_graph: G, logger: L) -> Self {
		Self {
			decay_params,
			network_graph,
			logger,
			channel_liquidities: new_hash_map(),
		}
	}

	#[cfg(test)]
	fn with_channel(mut self, short_channel_id: u64, liquidity: ChannelLiquidity) -> Self {
		assert!(self.channel_liquidities.insert(short_channel_id, liquidity).is_none());
		self
	}

	/// Dump the contents of this scorer into the configured logger.
	///
	/// Note that this writes roughly one line per channel for which we have a liquidity estimate,
	/// which may be a substantial amount of log output.
	pub fn debug_log_liquidity_stats(&self) {
		let graph = self.network_graph.read_only();
		for (scid, liq) in self.channel_liquidities.iter() {
			if let Some(chan_debug) = graph.channels().get(scid) {
				let log_direction = |source, target| {
					if let Some((directed_info, _)) = chan_debug.as_directed_to(target) {
						let amt = directed_info.effective_capacity().as_msat();
						let dir_liq = liq.as_directed(source, target, amt);

						let min_buckets = &dir_liq.liquidity_history.min_liquidity_offset_history_buckets();
						let max_buckets = &dir_liq.liquidity_history.max_liquidity_offset_history_buckets();

						log_debug!(self.logger, core::concat!(
							"Liquidity from {} to {} via {} is in the range ({}, {}).\n",
							"\tHistorical min liquidity bucket relative probabilities:\n",
							"\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n",
							"\tHistorical max liquidity bucket relative probabilities:\n",
							"\t\t{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}"),
							source, target, scid, dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat(),
							min_buckets[ 0], min_buckets[ 1], min_buckets[ 2], min_buckets[ 3],
							min_buckets[ 4], min_buckets[ 5], min_buckets[ 6], min_buckets[ 7],
							min_buckets[ 8], min_buckets[ 9], min_buckets[10], min_buckets[11],
							min_buckets[12], min_buckets[13], min_buckets[14], min_buckets[15],
							min_buckets[16], min_buckets[17], min_buckets[18], min_buckets[19],
							min_buckets[20], min_buckets[21], min_buckets[22], min_buckets[23],
							min_buckets[24], min_buckets[25], min_buckets[26], min_buckets[27],
							min_buckets[28], min_buckets[29], min_buckets[30], min_buckets[31],
							// Note that the liquidity buckets are an offset from the edge, so we
							// inverse the max order to get the probabilities from zero.
							max_buckets[31], max_buckets[30], max_buckets[29], max_buckets[28],
							max_buckets[27], max_buckets[26], max_buckets[25], max_buckets[24],
							max_buckets[23], max_buckets[22], max_buckets[21], max_buckets[20],
							max_buckets[19], max_buckets[18], max_buckets[17], max_buckets[16],
							max_buckets[15], max_buckets[14], max_buckets[13], max_buckets[12],
							max_buckets[11], max_buckets[10], max_buckets[ 9], max_buckets[ 8],
							max_buckets[ 7], max_buckets[ 6], max_buckets[ 5], max_buckets[ 4],
							max_buckets[ 3], max_buckets[ 2], max_buckets[ 1], max_buckets[ 0]);
					} else {
						log_debug!(self.logger, "No amount known for SCID {} from {:?} to {:?}", scid, source, target);
					}
				};

				log_direction(&chan_debug.node_one, &chan_debug.node_two);
				log_direction(&chan_debug.node_two, &chan_debug.node_one);
			} else {
				log_debug!(self.logger, "No network graph entry for SCID {}", scid);
			}
		}
	}

	/// Query the estimated minimum and maximum liquidity available for sending a payment over the
	/// channel with `scid` towards the given `target` node.
	pub fn estimated_channel_liquidity_range(&self, scid: u64, target: &NodeId) -> Option<(u64, u64)> {
		let graph = self.network_graph.read_only();

		if let Some(chan) = graph.channels().get(&scid) {
			if let Some(liq) = self.channel_liquidities.get(&scid) {
				if let Some((directed_info, source)) = chan.as_directed_to(target) {
					let amt = directed_info.effective_capacity().as_msat();
					let dir_liq = liq.as_directed(source, target, amt);
					return Some((dir_liq.min_liquidity_msat(), dir_liq.max_liquidity_msat()));
				}
			}
		}
		None
	}

	/// Query the historical estimated minimum and maximum liquidity available for sending a
	/// payment over the channel with `scid` towards the given `target` node.
	///
	/// Returns two sets of 32 buckets. The first set describes the lower-bound liquidity history,
	/// the second set describes the upper-bound liquidity history. Each bucket describes the
	/// relative frequency at which we've seen a liquidity bound in the bucket's range relative to
	/// the channel's total capacity, on an arbitrary scale. Because the values are slowly decayed,
	/// more recent data points are weighted more heavily than older datapoints.
	///
	/// Note that the range of each bucket varies by its location to provide more granular results
	/// at the edges of a channel's capacity, where it is more likely to sit.
	///
	/// When scoring, the estimated probability that an upper-/lower-bound lies in a given bucket
	/// is calculated by dividing that bucket's value with the total value of all buckets.
	///
	/// For example, using a lower bucket count for illustrative purposes, a value of
	/// `[0, 0, 0, ..., 0, 32]` indicates that we believe the probability of a bound being very
	/// close to the channel's capacity to be 100%, and have never (recently) seen it in any other
	/// bucket. A value of `[31, 0, 0, ..., 0, 0, 32]` indicates we've seen the bound being both
	/// in the top and bottom bucket, and roughly with similar (recent) frequency.
	///
	/// Because the datapoints are decayed slowly over time, values will eventually return to
	/// `Some(([0; 32], [0; 32]))` or `None` if no data remains for a channel.
	///
	/// In order to fetch a single success probability from the buckets provided here, as used in
	/// the scoring model, see [`Self::historical_estimated_payment_success_probability`].
	pub fn historical_estimated_channel_liquidity_probabilities(&self, scid: u64, target: &NodeId)
	-> Option<([u16; 32], [u16; 32])> {
		let graph = self.network_graph.read_only();

		if let Some(chan) = graph.channels().get(&scid) {
			if let Some(liq) = self.channel_liquidities.get(&scid) {
				if let Some((directed_info, source)) = chan.as_directed_to(target) {
					let amt = directed_info.effective_capacity().as_msat();
					let dir_liq = liq.as_directed(source, target, amt);

					let min_buckets = *dir_liq.liquidity_history.min_liquidity_offset_history_buckets();
					let mut max_buckets = *dir_liq.liquidity_history.max_liquidity_offset_history_buckets();

					// Note that the liquidity buckets are an offset from the edge, so we inverse
					// the max order to get the probabilities from zero.
					max_buckets.reverse();
					return Some((min_buckets, max_buckets));
				}
			}
		}
		None
	}

	/// Query the probability of payment success sending the given `amount_msat` over the channel
	/// with `scid` towards the given `target` node, based on the historical estimated liquidity
	/// bounds.
	///
	/// Returns `None` if:
	///  - the given channel is not in the network graph, the provided `target` is not a party to
	///    the channel, or we don't have forwarding parameters for either direction in the channel.
	///  - `allow_fallback_estimation` is *not* set and there is no (or insufficient) historical
	///    data for the given channel.
	///
	/// These are the same bounds as returned by
	/// [`Self::historical_estimated_channel_liquidity_probabilities`] (but not those returned by
	/// [`Self::estimated_channel_liquidity_range`]).
	pub fn historical_estimated_payment_success_probability(
		&self, scid: u64, target: &NodeId, amount_msat: u64, params: &ProbabilisticScoringFeeParameters,
		allow_fallback_estimation: bool,
	) -> Option<f64> {
		let graph = self.network_graph.read_only();

		if let Some(chan) = graph.channels().get(&scid) {
			if let Some((directed_info, source)) = chan.as_directed_to(target) {
				if let Some(liq) = self.channel_liquidities.get(&scid) {
					let capacity_msat = directed_info.effective_capacity().as_msat();
					let dir_liq = liq.as_directed(source, target, capacity_msat);

					let res = dir_liq.liquidity_history.calculate_success_probability_times_billion(
						&params, amount_msat, capacity_msat
					).map(|p| p as f64 / (1024 * 1024 * 1024) as f64);
					if res.is_some() {
						return res;
					}
				}
				if allow_fallback_estimation {
					let amt = amount_msat;
					return Some(
						self.calc_live_prob(scid, source, target, directed_info, amt, params, true)
					);
				}
			}
		}
		None
	}

	fn calc_live_prob(
		&self, scid: u64, source: &NodeId, target: &NodeId, directed_info: DirectedChannelInfo,
		amt: u64, params: &ProbabilisticScoringFeeParameters,
		min_zero_penalty: bool,
	) -> f64 {
		let capacity_msat = directed_info.effective_capacity().as_msat();
		let dummy_liq = ChannelLiquidity::new(Duration::ZERO);
		let liq = self.channel_liquidities.get(&scid)
			.unwrap_or(&dummy_liq)
			.as_directed(&source, &target, capacity_msat);
		let min_liq = liq.min_liquidity_msat();
		let max_liq = liq.max_liquidity_msat();
		if amt <= liq.min_liquidity_msat() {
			return 1.0;
		} else if amt > liq.max_liquidity_msat() {
			return 0.0;
		}
		let (num, den) =
			success_probability(amt, min_liq, max_liq, capacity_msat, &params, min_zero_penalty);
		num as f64 / den as f64
	}

	/// Query the probability of payment success sending the given `amount_msat` over the channel
	/// with `scid` towards the given `target` node, based on the live estimated liquidity bounds.
	///
	/// This will return `Some` for any channel which is present in the [`NetworkGraph`], including
	/// if we have no bound information beside the channel's capacity.
	pub fn live_estimated_payment_success_probability(
		&self, scid: u64, target: &NodeId, amount_msat: u64, params: &ProbabilisticScoringFeeParameters,
	) -> Option<f64> {
		let graph = self.network_graph.read_only();

		if let Some(chan) = graph.channels().get(&scid) {
			if let Some((directed_info, source)) = chan.as_directed_to(target) {
				return Some(self.calc_live_prob(scid, source, target, directed_info, amount_msat, params, false));
			}
		}
		None
	}
}

impl ChannelLiquidity {
	fn new(last_updated: Duration) -> Self {
		Self {
			min_liquidity_offset_msat: 0,
			max_liquidity_offset_msat: 0,
			liquidity_history: HistoricalLiquidityTracker::new(),
			last_updated,
			offset_history_last_updated: last_updated,
		}
	}

	/// Returns a view of the channel liquidity directed from `source` to `target` assuming
	/// `capacity_msat`.
	fn as_directed(
		&self, source: &NodeId, target: &NodeId, capacity_msat: u64,
	) -> DirectedChannelLiquidity<&u64, &HistoricalLiquidityTracker, &Duration> {
		let source_less_than_target = source < target;
		let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
			if source_less_than_target {
				(&self.min_liquidity_offset_msat, &self.max_liquidity_offset_msat)
			} else {
				(&self.max_liquidity_offset_msat, &self.min_liquidity_offset_msat)
			};

		DirectedChannelLiquidity {
			min_liquidity_offset_msat,
			max_liquidity_offset_msat,
			liquidity_history: self.liquidity_history.as_directed(source_less_than_target),
			capacity_msat,
			last_updated: &self.last_updated,
			offset_history_last_updated: &self.offset_history_last_updated,
		}
	}

	/// Returns a mutable view of the channel liquidity directed from `source` to `target` assuming
	/// `capacity_msat`.
	fn as_directed_mut(
		&mut self, source: &NodeId, target: &NodeId, capacity_msat: u64,
	) -> DirectedChannelLiquidity<&mut u64, &mut HistoricalLiquidityTracker, &mut Duration> {
		let source_less_than_target = source < target;
		let (min_liquidity_offset_msat, max_liquidity_offset_msat) =
			if source_less_than_target {
				(&mut self.min_liquidity_offset_msat, &mut self.max_liquidity_offset_msat)
			} else {
				(&mut self.max_liquidity_offset_msat, &mut self.min_liquidity_offset_msat)
			};

		DirectedChannelLiquidity {
			min_liquidity_offset_msat,
			max_liquidity_offset_msat,
			liquidity_history: self.liquidity_history.as_directed_mut(source_less_than_target),
			capacity_msat,
			last_updated: &mut self.last_updated,
			offset_history_last_updated: &mut self.offset_history_last_updated,
		}
	}

	fn decayed_offset(
		&self, offset: u64, duration_since_epoch: Duration,
		decay_params: ProbabilisticScoringDecayParameters,
	) -> u64 {
		let half_life = decay_params.liquidity_offset_half_life.as_secs_f64();
		if half_life != 0.0 {
			let elapsed_time = duration_since_epoch.saturating_sub(self.last_updated).as_secs_f64();
			((offset as f64) * powf64(0.5, elapsed_time / half_life)) as u64
		} else {
			0
		}
	}
}

/// Bounds `-log10` to avoid excessive liquidity penalties for payments with low success
/// probabilities.
const NEGATIVE_LOG10_UPPER_BOUND: u64 = 2;

/// The rough cutoff at which our precision falls off and we should stop bothering to try to log a
/// ratio, as X in 1/X.
const PRECISION_LOWER_BOUND_DENOMINATOR: u64 = log_approx::LOWER_BITS_BOUND;

/// The divisor used when computing the amount penalty.
const AMOUNT_PENALTY_DIVISOR: u64 = 1 << 20;
const BASE_AMOUNT_PENALTY_DIVISOR: u64 = 1 << 30;

/// Raises three `f64`s to the 9th power, without `powi` because it requires `std` (dunno why).
#[inline(always)]
fn three_f64_pow_9(a: f64, b: f64, c: f64) -> (f64, f64, f64) {
	let (a2, b2, c2) = (a * a, b * b, c * c);
	let (a4, b4, c4) = (a2 * a2, b2 * b2, c2 * c2);
	(a * a4 * a4, b * b4 * b4, c * c4 * c4)
}

/// If we have no knowledge of the channel, we scale probability down by a multiple of ~82% for the
/// historical model by multiplying the denominator of a success probability by this before
/// dividing by 64.
///
/// This number (as well as the PDF) was picked experimentally on probing results to maximize the
/// log-loss of succeeding and failing hops.
///
/// Note that we prefer to increase the denominator rather than decrease the numerator as the
/// denominator is more likely to be larger and thus provide greater precision. This is mostly an
/// overoptimization but makes a large difference in tests.
const MIN_ZERO_IMPLIES_NO_SUCCESSES_PENALTY_ON_64: u64 = 78;

#[inline(always)]
fn linear_success_probability(
	total_inflight_amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64,
	min_zero_implies_no_successes: bool,
) -> (u64, u64) {
	let (numerator, mut denominator) =
		(max_liquidity_msat - total_inflight_amount_msat,
		(max_liquidity_msat - min_liquidity_msat).saturating_add(1));

	if min_zero_implies_no_successes && min_liquidity_msat == 0 &&
		denominator < u64::max_value() / MIN_ZERO_IMPLIES_NO_SUCCESSES_PENALTY_ON_64
	{
		denominator = denominator * MIN_ZERO_IMPLIES_NO_SUCCESSES_PENALTY_ON_64 / 64
	}

	(numerator, denominator)
}

/// Returns a (numerator, denominator) pair each between 0 and 0.0078125, inclusive.
#[inline(always)]
fn nonlinear_success_probability(
	total_inflight_amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64,
	capacity_msat: u64, min_zero_implies_no_successes: bool,
) -> (f64, f64) {
	let capacity = capacity_msat as f64;
	let max = (max_liquidity_msat as f64) / capacity;
	let min = (min_liquidity_msat as f64) / capacity;
	let amount = (total_inflight_amount_msat as f64) / capacity;

	// Assume the channel has a probability density function of
	// `128 * (1/256 + 9*(x - 0.5)^8)` for values from 0 to 1 (where 1 is the channel's
	// full capacity). The success probability given some liquidity bounds is thus the
	// integral under the curve from the amount to maximum estimated liquidity, divided by
	// the same integral from the minimum to the maximum estimated liquidity bounds.
	//
	// Because the integral from x to y is simply
	// `128*(1/256 * (y - 0.5) + (y - 0.5)^9) - 128*(1/256 * (x - 0.5) + (x - 0.5)^9), we
	// can calculate the cumulative density function between the min/max bounds trivially.
	// Note that we don't bother to normalize the CDF to total to 1 (using the 128
	// multiple), as it will come out in the division of num / den.
	let (max_norm, min_norm, amt_norm) = (max - 0.5, min - 0.5, amount - 0.5);
	let (max_pow, min_pow, amt_pow) = three_f64_pow_9(max_norm, min_norm, amt_norm);
	let (max_v, min_v, amt_v) = (max_pow + max_norm / 256.0, min_pow + min_norm / 256.0, amt_pow + amt_norm / 256.0);
	let mut denominator = max_v - min_v;
	let numerator = max_v - amt_v;

	if min_zero_implies_no_successes && min_liquidity_msat == 0 {
		denominator = denominator * (MIN_ZERO_IMPLIES_NO_SUCCESSES_PENALTY_ON_64 as f64) / 64.0;
	}

	(numerator, denominator)
}

/// Given liquidity bounds, calculates the success probability (in the form of a numerator and
/// denominator) of an HTLC. This is a key assumption in our scoring models.
///
/// `total_inflight_amount_msat` includes the amount of the HTLC and any HTLCs in flight over the
/// channel.
///
/// min_zero_implies_no_successes signals that a `min_liquidity_msat` of 0 means we've not
/// (recently) seen an HTLC successfully complete over this channel.
#[inline(always)]
fn success_probability_float(
	total_inflight_amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64,
	capacity_msat: u64, params: &ProbabilisticScoringFeeParameters,
	min_zero_implies_no_successes: bool,
) -> (f64, f64) {
	debug_assert!(min_liquidity_msat <= total_inflight_amount_msat);
	debug_assert!(total_inflight_amount_msat < max_liquidity_msat);
	debug_assert!(max_liquidity_msat <= capacity_msat);

	if params.linear_success_probability {
		let (numerator, denominator) = linear_success_probability(total_inflight_amount_msat, min_liquidity_msat, max_liquidity_msat, min_zero_implies_no_successes);
		(numerator as f64, denominator as f64)
	} else {
		nonlinear_success_probability(total_inflight_amount_msat, min_liquidity_msat, max_liquidity_msat, capacity_msat, min_zero_implies_no_successes)
	}
}

#[inline(always)]
/// Identical to [`success_probability_float`] but returns integer numerator and denominators.
///
/// Must not return a numerator or denominator greater than 2^31 for arguments less than 2^31.
fn success_probability(
	total_inflight_amount_msat: u64, min_liquidity_msat: u64, max_liquidity_msat: u64,
	capacity_msat: u64, params: &ProbabilisticScoringFeeParameters,
	min_zero_implies_no_successes: bool,
) -> (u64, u64) {
	debug_assert!(min_liquidity_msat <= total_inflight_amount_msat);
	debug_assert!(total_inflight_amount_msat < max_liquidity_msat);
	debug_assert!(max_liquidity_msat <= capacity_msat);

	if params.linear_success_probability {
		linear_success_probability(total_inflight_amount_msat, min_liquidity_msat, max_liquidity_msat, min_zero_implies_no_successes)
	} else {
		// We calculate the nonlinear probabilities using floats anyway, so just stub out to
		// the float version and then convert to integers.
		let (num, den) = nonlinear_success_probability(
			total_inflight_amount_msat, min_liquidity_msat, max_liquidity_msat, capacity_msat,
			min_zero_implies_no_successes,
		);

		// Because our numerator and denominator max out at 0.0078125 we need to multiply them
		// by quite a large factor to get something useful (ideally in the 2^30 range).
		const BILLIONISH: f64 = 1024.0 * 1024.0 * 1024.0 * 64.0;
		let numerator = (num * BILLIONISH) as u64 + 1;
		let denominator = (den * BILLIONISH) as u64 + 1;
		debug_assert!(numerator <= 1 << 30, "Got large numerator ({}) from float {}.", numerator, num);
		debug_assert!(denominator <= 1 << 30, "Got large denominator ({}) from float {}.", denominator, den);
		(numerator, denominator)
	}
}

impl<L: Deref<Target = u64>, HT: Deref<Target = HistoricalLiquidityTracker>, T: Deref<Target = Duration>>
DirectedChannelLiquidity< L, HT, T> {
	/// Returns a liquidity penalty for routing the given HTLC `amount_msat` through the channel in
	/// this direction.
	fn penalty_msat(
		&self, amount_msat: u64, inflight_htlc_msat: u64,
		score_params: &ProbabilisticScoringFeeParameters,
	) -> u64 {
		let total_inflight_amount_msat = amount_msat.saturating_add(inflight_htlc_msat);
		let available_capacity = self.capacity_msat;
		let max_liquidity_msat = self.max_liquidity_msat();
		let min_liquidity_msat = core::cmp::min(self.min_liquidity_msat(), max_liquidity_msat);

		let mut res = 0;
		if score_params.liquidity_penalty_multiplier_msat != 0 ||
		   score_params.liquidity_penalty_amount_multiplier_msat != 0 {
			if total_inflight_amount_msat <= min_liquidity_msat {
				// If the in-flight is less than the minimum liquidity estimate, we don't assign a
				// liquidity penalty at all (as the success probability is 100%).
			} else if total_inflight_amount_msat >= max_liquidity_msat {
				// Equivalent to hitting the else clause below with the amount equal to the effective
				// capacity and without any certainty on the liquidity upper bound, plus the
				// impossibility penalty.
				let negative_log10_times_2048 = NEGATIVE_LOG10_UPPER_BOUND * 2048;
				res = Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
						score_params.liquidity_penalty_multiplier_msat,
						score_params.liquidity_penalty_amount_multiplier_msat);
			} else {
				let (numerator, denominator) = success_probability(
					total_inflight_amount_msat, min_liquidity_msat, max_liquidity_msat,
					available_capacity, score_params, false,
				);
				if denominator - numerator < denominator / PRECISION_LOWER_BOUND_DENOMINATOR {
					// If the failure probability is < 1.5625% (as 1 - numerator/denominator < 1/64),
					// don't bother trying to use the log approximation as it gets too noisy to be
					// particularly helpful, instead just round down to 0.
				} else {
					let negative_log10_times_2048 =
						log_approx::negative_log10_times_2048(numerator, denominator);
					res = Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
						score_params.liquidity_penalty_multiplier_msat,
						score_params.liquidity_penalty_amount_multiplier_msat);
				}
			}
		}

		if total_inflight_amount_msat >= max_liquidity_msat {
			res = res.saturating_add(score_params.considered_impossible_penalty_msat);
		}

		if total_inflight_amount_msat >= available_capacity {
			// We're trying to send more than the capacity, use a max penalty.
			res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
				NEGATIVE_LOG10_UPPER_BOUND * 2048,
				score_params.historical_liquidity_penalty_multiplier_msat,
				score_params.historical_liquidity_penalty_amount_multiplier_msat));
			return res;
		}

		if score_params.historical_liquidity_penalty_multiplier_msat != 0 ||
		   score_params.historical_liquidity_penalty_amount_multiplier_msat != 0 {
			if let Some(cumulative_success_prob_times_billion) = self.liquidity_history
				.calculate_success_probability_times_billion(
					score_params, total_inflight_amount_msat, self.capacity_msat
				)
			{
				let historical_negative_log10_times_2048 =
					log_approx::negative_log10_times_2048(cumulative_success_prob_times_billion + 1, 1024 * 1024 * 1024);
				res = res.saturating_add(Self::combined_penalty_msat(amount_msat,
					historical_negative_log10_times_2048, score_params.historical_liquidity_penalty_multiplier_msat,
					score_params.historical_liquidity_penalty_amount_multiplier_msat));
			} else {
				// If we don't have any valid points (or, once decayed, we have less than a full
				// point), redo the non-historical calculation with no liquidity bounds tracked and
				// the historical penalty multipliers.
				let (numerator, denominator) = success_probability(
					total_inflight_amount_msat, 0, available_capacity, available_capacity,
					score_params, true,
				);
				let negative_log10_times_2048 =
					log_approx::negative_log10_times_2048(numerator, denominator);
				res = res.saturating_add(Self::combined_penalty_msat(amount_msat, negative_log10_times_2048,
					score_params.historical_liquidity_penalty_multiplier_msat,
					score_params.historical_liquidity_penalty_amount_multiplier_msat));
			}
		}

		res
	}

	/// Computes the liquidity penalty from the penalty multipliers.
	#[inline(always)]
	fn combined_penalty_msat(amount_msat: u64, mut negative_log10_times_2048: u64,
		liquidity_penalty_multiplier_msat: u64, liquidity_penalty_amount_multiplier_msat: u64,
	) -> u64 {
		negative_log10_times_2048 =
			negative_log10_times_2048.min(NEGATIVE_LOG10_UPPER_BOUND * 2048);

		// Upper bound the liquidity penalty to ensure some channel is selected.
		let liquidity_penalty_msat = negative_log10_times_2048
			.saturating_mul(liquidity_penalty_multiplier_msat) / 2048;
		let amount_penalty_msat = negative_log10_times_2048
			.saturating_mul(liquidity_penalty_amount_multiplier_msat)
			.saturating_mul(amount_msat) / 2048 / AMOUNT_PENALTY_DIVISOR;

		liquidity_penalty_msat.saturating_add(amount_penalty_msat)
	}

	/// Returns the lower bound of the channel liquidity balance in this direction.
	#[inline(always)]
	fn min_liquidity_msat(&self) -> u64 {
		*self.min_liquidity_offset_msat
	}

	/// Returns the upper bound of the channel liquidity balance in this direction.
	#[inline(always)]
	fn max_liquidity_msat(&self) -> u64 {
		self.capacity_msat
			.saturating_sub(*self.max_liquidity_offset_msat)
	}
}

impl<L: DerefMut<Target = u64>, HT: DerefMut<Target = HistoricalLiquidityTracker>, T: DerefMut<Target = Duration>>
DirectedChannelLiquidity<L, HT, T> {
	/// Adjusts the channel liquidity balance bounds when failing to route `amount_msat`.
	fn failed_at_channel<Log: Deref>(
		&mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
	) where Log::Target: Logger {
		let existing_max_msat = self.max_liquidity_msat();
		if amount_msat < existing_max_msat {
			log_debug!(logger, "Setting max liquidity of {} from {} to {}", chan_descr, existing_max_msat, amount_msat);
			self.set_max_liquidity_msat(amount_msat, duration_since_epoch);
		} else {
			log_trace!(logger, "Max liquidity of {} is {} (already less than or equal to {})",
				chan_descr, existing_max_msat, amount_msat);
		}
		self.update_history_buckets(0, duration_since_epoch);
	}

	/// Adjusts the channel liquidity balance bounds when failing to route `amount_msat` downstream.
	fn failed_downstream<Log: Deref>(
		&mut self, amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
	) where Log::Target: Logger {
		let existing_min_msat = self.min_liquidity_msat();
		if amount_msat > existing_min_msat {
			log_debug!(logger, "Setting min liquidity of {} from {} to {}", existing_min_msat, chan_descr, amount_msat);
			self.set_min_liquidity_msat(amount_msat, duration_since_epoch);
		} else {
			log_trace!(logger, "Min liquidity of {} is {} (already greater than or equal to {})",
				chan_descr, existing_min_msat, amount_msat);
		}
		self.update_history_buckets(0, duration_since_epoch);
	}

	/// Adjusts the channel liquidity balance bounds when successfully routing `amount_msat`.
	fn successful<Log: Deref>(&mut self,
		amount_msat: u64, duration_since_epoch: Duration, chan_descr: fmt::Arguments, logger: &Log
	) where Log::Target: Logger {
		let max_liquidity_msat = self.max_liquidity_msat().checked_sub(amount_msat).unwrap_or(0);
		log_debug!(logger, "Subtracting {} from max liquidity of {} (setting it to {})", amount_msat, chan_descr, max_liquidity_msat);
		self.set_max_liquidity_msat(max_liquidity_msat, duration_since_epoch);
		self.update_history_buckets(amount_msat, duration_since_epoch);
	}

	/// Updates the history buckets for this channel. Because the history buckets track what we now
	/// know about the channel's state *prior to our payment* (i.e. what we assume is "steady
	/// state"), we allow the caller to set an offset applied to our liquidity bounds which
	/// represents the amount of the successful payment we just made.
	fn update_history_buckets(&mut self, bucket_offset_msat: u64, duration_since_epoch: Duration) {
		self.liquidity_history.track_datapoint(
			*self.min_liquidity_offset_msat + bucket_offset_msat,
			self.max_liquidity_offset_msat.saturating_sub(bucket_offset_msat),
			self.capacity_msat,
		);
		*self.offset_history_last_updated = duration_since_epoch;
	}

	/// Adjusts the lower bound of the channel liquidity balance in this direction.
	fn set_min_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
		*self.min_liquidity_offset_msat = amount_msat;
		if amount_msat > self.max_liquidity_msat() {
			*self.max_liquidity_offset_msat = 0;
		}
		*self.last_updated = duration_since_epoch;
	}

	/// Adjusts the upper bound of the channel liquidity balance in this direction.
	fn set_max_liquidity_msat(&mut self, amount_msat: u64, duration_since_epoch: Duration) {
		*self.max_liquidity_offset_msat = self.capacity_msat.checked_sub(amount_msat).unwrap_or(0);
		if amount_msat < *self.min_liquidity_offset_msat {
			*self.min_liquidity_offset_msat = 0;
		}
		*self.last_updated = duration_since_epoch;
	}
}

impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreLookUp for ProbabilisticScorer<G, L> where L::Target: Logger {
	type ScoreParams = ProbabilisticScoringFeeParameters;
	fn channel_penalty_msat(
		&self, candidate: &CandidateRouteHop, usage: ChannelUsage, score_params: &ProbabilisticScoringFeeParameters
	) -> u64 {
		let (scid, target) = match candidate {
			CandidateRouteHop::PublicHop(PublicHopCandidate { info, short_channel_id }) => {
				(short_channel_id, info.target())
			},
			_ => return 0,
		};
		let source = candidate.source();
		if let Some(penalty) = score_params.manual_node_penalties.get(target) {
			return *penalty;
		}

		let base_penalty_msat = score_params.base_penalty_msat.saturating_add(
			score_params.base_penalty_amount_multiplier_msat
				.saturating_mul(usage.amount_msat) / BASE_AMOUNT_PENALTY_DIVISOR);

		let mut anti_probing_penalty_msat = 0;
		match usage.effective_capacity {
			EffectiveCapacity::ExactLiquidity { liquidity_msat: amount_msat } |
				EffectiveCapacity::HintMaxHTLC { amount_msat } =>
			{
				if usage.amount_msat > amount_msat {
					return u64::max_value();
				} else {
					return base_penalty_msat;
				}
			},
			EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat } => {
				if htlc_maximum_msat >= capacity_msat/2 {
					anti_probing_penalty_msat = score_params.anti_probing_penalty_msat;
				}
			},
			_ => {},
		}

		let capacity_msat = usage.effective_capacity.as_msat();
		self.channel_liquidities
			.get(scid)
			.unwrap_or(&ChannelLiquidity::new(Duration::ZERO))
			.as_directed(&source, &target, capacity_msat)
			.penalty_msat(usage.amount_msat, usage.inflight_htlc_msat, score_params)
			.saturating_add(anti_probing_penalty_msat)
			.saturating_add(base_penalty_msat)
	}
}

impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> ScoreUpdate for ProbabilisticScorer<G, L> where L::Target: Logger {
	fn payment_path_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		let amount_msat = path.final_value_msat();
		log_trace!(self.logger, "Scoring path through to SCID {} as having failed at {} msat", short_channel_id, amount_msat);
		let network_graph = self.network_graph.read_only();
		for (hop_idx, hop) in path.hops.iter().enumerate() {
			let target = NodeId::from_pubkey(&hop.pubkey);
			let channel_directed_from_source = network_graph.channels()
				.get(&hop.short_channel_id)
				.and_then(|channel| channel.as_directed_to(&target));

			let at_failed_channel = hop.short_channel_id == short_channel_id;
			if at_failed_channel && hop_idx == 0 {
				log_warn!(self.logger, "Payment failed at the first hop - we do not attempt to learn channel info in such cases as we can directly observe local state.\n\tBecause we know the local state, we should generally not see failures here - this may be an indication that your channel peer on channel {} is broken and you may wish to close the channel.", hop.short_channel_id);
			}

			// Only score announced channels.
			if let Some((channel, source)) = channel_directed_from_source {
				let capacity_msat = channel.effective_capacity().as_msat();
				if at_failed_channel {
					self.channel_liquidities
						.entry(hop.short_channel_id)
						.or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
						.as_directed_mut(source, &target, capacity_msat)
						.failed_at_channel(amount_msat, duration_since_epoch,
							format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
				} else {
					self.channel_liquidities
						.entry(hop.short_channel_id)
						.or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
						.as_directed_mut(source, &target, capacity_msat)
						.failed_downstream(amount_msat, duration_since_epoch,
							format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
				}
			} else {
				log_debug!(self.logger, "Not able to penalize channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
					hop.short_channel_id);
			}
			if at_failed_channel { break; }
		}
	}

	fn payment_path_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		let amount_msat = path.final_value_msat();
		log_trace!(self.logger, "Scoring path through SCID {} as having succeeded at {} msat.",
			path.hops.split_last().map(|(hop, _)| hop.short_channel_id).unwrap_or(0), amount_msat);
		let network_graph = self.network_graph.read_only();
		for hop in &path.hops {
			let target = NodeId::from_pubkey(&hop.pubkey);
			let channel_directed_from_source = network_graph.channels()
				.get(&hop.short_channel_id)
				.and_then(|channel| channel.as_directed_to(&target));

			// Only score announced channels.
			if let Some((channel, source)) = channel_directed_from_source {
				let capacity_msat = channel.effective_capacity().as_msat();
				self.channel_liquidities
					.entry(hop.short_channel_id)
					.or_insert_with(|| ChannelLiquidity::new(duration_since_epoch))
					.as_directed_mut(source, &target, capacity_msat)
					.successful(amount_msat, duration_since_epoch,
						format_args!("SCID {}, towards {:?}", hop.short_channel_id, target), &self.logger);
			} else {
				log_debug!(self.logger, "Not able to learn for channel with SCID {} as we do not have graph info for it (likely a route-hint last-hop).",
					hop.short_channel_id);
			}
		}
	}

	fn probe_failed(&mut self, path: &Path, short_channel_id: u64, duration_since_epoch: Duration) {
		self.payment_path_failed(path, short_channel_id, duration_since_epoch)
	}

	fn probe_successful(&mut self, path: &Path, duration_since_epoch: Duration) {
		self.payment_path_failed(path, u64::max_value(), duration_since_epoch)
	}

	fn time_passed(&mut self, duration_since_epoch: Duration) {
		let decay_params = self.decay_params;
		self.channel_liquidities.retain(|_scid, liquidity| {
			liquidity.min_liquidity_offset_msat =
				liquidity.decayed_offset(liquidity.min_liquidity_offset_msat, duration_since_epoch, decay_params);
			liquidity.max_liquidity_offset_msat =
				liquidity.decayed_offset(liquidity.max_liquidity_offset_msat, duration_since_epoch, decay_params);
			liquidity.last_updated = duration_since_epoch;

			let elapsed_time =
				duration_since_epoch.saturating_sub(liquidity.offset_history_last_updated);
			if elapsed_time > decay_params.historical_no_updates_half_life {
				let half_life = decay_params.historical_no_updates_half_life.as_secs_f64();
				if half_life != 0.0 {
					liquidity.liquidity_history.decay_buckets(elapsed_time.as_secs_f64() / half_life);
					liquidity.offset_history_last_updated = duration_since_epoch;
				}
			}
			liquidity.min_liquidity_offset_msat != 0 || liquidity.max_liquidity_offset_msat != 0 ||
				liquidity.liquidity_history.has_datapoints()
		});
	}
}

#[cfg(c_bindings)]
impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Score for ProbabilisticScorer<G, L>
where L::Target: Logger {}

#[cfg(feature = "std")]
#[inline]
fn powf64(n: f64, exp: f64) -> f64 {
	n.powf(exp)
}
#[cfg(not(feature = "std"))]
fn powf64(n: f64, exp: f64) -> f64 {
	libm::powf(n as f32, exp as f32) as f64
}

mod bucketed_history {
	use super::*;

	// Because liquidity is often skewed heavily in one direction, we store historical state
	// distribution in buckets of different size. For backwards compatibility, buckets of size 1/8th
	// must fit evenly into the buckets here.
	//
	// The smallest bucket is 2^-14th of the channel, for each of our 32 buckets here we define the
	// width of the bucket in 2^14'ths of the channel. This increases exponentially until we reach
	// a full 16th of the channel's capacity, which is reapeated a few times for backwards
	// compatibility. The four middle buckets represent full octiles of the channel's capacity.
	//
	// For a 1 BTC channel, this let's us differentiate between failures in the bottom 6k sats, or
	// between the 12,000th sat and 24,000th sat, while only needing to store and operate on 32
	// buckets in total.

	// By default u16s may not be cache-aligned, but we'd rather not have to read a third cache
	// line just to access it
	#[repr(align(128))]
	struct BucketStartPos([u16; 33]);
	impl BucketStartPos {
		const fn new() -> Self {
			Self([
				0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096, 6144, 8192, 10240, 12288,
				13312, 14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383, 16384,
			])
		}
	}
	impl core::ops::Index<usize> for BucketStartPos {
		type Output = u16;
		#[inline(always)]
		fn index(&self, index: usize) -> &u16 { &self.0[index] }
	}
	const BUCKET_START_POS: BucketStartPos = BucketStartPos::new();

	const LEGACY_TO_BUCKET_RANGE: [(u8, u8); 8] = [
		(0, 12), (12, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 20), (20, 32)
	];

	const POSITION_TICKS: u16 = 1 << 14;

	fn pos_to_bucket(pos: u16) -> usize {
		for bucket in 0..32 {
			if pos < BUCKET_START_POS[bucket + 1] {
				return bucket;
			}
		}
		debug_assert!(false);
		return 32;
	}

	#[cfg(test)]
	#[test]
	fn check_bucket_maps() {
		const BUCKET_WIDTH_IN_16384S: [u16; 32] = [
			1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1024, 1024, 2048, 2048,
			2048, 2048, 1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1];

		let mut min_size_iter = 0;
		let mut legacy_bucket_iter = 0;
		for (bucket, width) in BUCKET_WIDTH_IN_16384S.iter().enumerate() {
			assert_eq!(BUCKET_START_POS[bucket], min_size_iter);
			for i in 0..*width {
				assert_eq!(pos_to_bucket(min_size_iter + i) as usize, bucket);
			}
			min_size_iter += *width;
			if min_size_iter % (POSITION_TICKS / 8) == 0 {
				assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter].1 as usize, bucket + 1);
				if legacy_bucket_iter + 1 < 8 {
					assert_eq!(LEGACY_TO_BUCKET_RANGE[legacy_bucket_iter + 1].0 as usize, bucket + 1);
				}
				legacy_bucket_iter += 1;
			}
		}
		assert_eq!(BUCKET_START_POS[32], POSITION_TICKS);
		assert_eq!(min_size_iter, POSITION_TICKS);
	}

	#[inline]
	fn amount_to_pos(amount_msat: u64, capacity_msat: u64) -> u16 {
		let pos = if amount_msat < u64::max_value() / (POSITION_TICKS as u64) {
			(amount_msat * (POSITION_TICKS as u64) / capacity_msat.saturating_add(1))
				.try_into().unwrap_or(POSITION_TICKS)
		} else {
			// Only use 128-bit arithmetic when multiplication will overflow to avoid 128-bit
			// division. This branch should only be hit in fuzz testing since the amount would
			// need to be over 2.88 million BTC in practice.
			((amount_msat as u128) * (POSITION_TICKS as u128)
					/ (capacity_msat as u128).saturating_add(1))
				.try_into().unwrap_or(POSITION_TICKS)
		};
		// If we are running in a client that doesn't validate gossip, its possible for a channel's
		// capacity to change due to a `channel_update` message which, if received while a payment
		// is in-flight, could cause this to fail. Thus, we only assert in test.
		#[cfg(test)]
		debug_assert!(pos < POSITION_TICKS);
		pos
	}

	/// Prior to LDK 0.0.117 we used eight buckets which were split evenly across the either
	/// octiles. This was changed to use 32 buckets for accuracy reasons in 0.0.117, however we
	/// support reading the legacy values here for backwards compatibility.
	pub(super) struct LegacyHistoricalBucketRangeTracker {
		buckets: [u16; 8],
	}

	impl LegacyHistoricalBucketRangeTracker {
		pub(crate) fn into_current(self) -> HistoricalBucketRangeTracker {
			let mut buckets = [0; 32];
			for (idx, legacy_bucket) in self.buckets.iter().enumerate() {
				let mut new_val = *legacy_bucket;
				let (start, end) = LEGACY_TO_BUCKET_RANGE[idx];
				new_val /= (end - start) as u16;
				for i in start..end {
					buckets[i as usize] = new_val;
				}
			}
			HistoricalBucketRangeTracker { buckets }
		}
	}

	/// Tracks the historical state of a distribution as a weighted average of how much time was spent
	/// in each of 32 buckets.
	#[derive(Clone, Copy)]
	pub(super) struct HistoricalBucketRangeTracker {
		buckets: [u16; 32],
	}

	/// Buckets are stored in fixed point numbers with a 5 bit fractional part. Thus, the value
	/// "one" is 32, or this constant.
	pub const BUCKET_FIXED_POINT_ONE: u16 = 32;

	impl HistoricalBucketRangeTracker {
		pub(super) fn new() -> Self { Self { buckets: [0; 32] } }
		fn track_datapoint(&mut self, liquidity_offset_msat: u64, capacity_msat: u64) {
			// We have 32 leaky buckets for min and max liquidity. Each bucket tracks the amount of time
			// we spend in each bucket as a 16-bit fixed-point number with a 5 bit fractional part.
			//
			// Each time we update our liquidity estimate, we add 32 (1.0 in our fixed-point system) to
			// the buckets for the current min and max liquidity offset positions.
			//
			// We then decay each bucket by multiplying by 2047/2048 (avoiding dividing by a
			// non-power-of-two). This ensures we can't actually overflow the u16 - when we get to
			// 63,457 adding 32 and decaying by 2047/2048 leaves us back at 63,457.
			//
			// In total, this allows us to track data for the last 8,000 or so payments across a given
			// channel.
			//
			// These constants are a balance - we try to fit in 2 bytes per bucket to reduce overhead,
			// and need to balance having more bits in the decimal part (to ensure decay isn't too
			// non-linear) with having too few bits in the mantissa, causing us to not store very many
			// datapoints.
			//
			// The constants were picked experimentally, selecting a decay amount that restricts us
			// from overflowing buckets without having to cap them manually.

			let pos: u16 = amount_to_pos(liquidity_offset_msat, capacity_msat);
			if pos < POSITION_TICKS {
				for e in self.buckets.iter_mut() {
					*e = ((*e as u32) * 2047 / 2048) as u16;
				}
				let bucket = pos_to_bucket(pos);
				self.buckets[bucket] = self.buckets[bucket].saturating_add(BUCKET_FIXED_POINT_ONE);
			}
		}
	}

	impl_writeable_tlv_based!(HistoricalBucketRangeTracker, { (0, buckets, required) });
	impl_writeable_tlv_based!(LegacyHistoricalBucketRangeTracker, { (0, buckets, required) });

	#[derive(Clone, Copy)]
	#[repr(C)] // Force the fields in memory to be in the order we specify.
	pub(super) struct HistoricalLiquidityTracker {
		// This struct sits inside a `(u64, ChannelLiquidity)` in memory, and we first read the
		// liquidity offsets in `ChannelLiquidity` when calculating the non-historical score. This
		// means that the first handful of bytes of this struct will already be sitting in cache by
		// the time we go to look at them.
		//
		// Because the first thing we do is check if `total_valid_points` is sufficient to consider
		// the data here at all, and can return early if it is not, we want this to go first to
		// avoid hitting a second cache line load entirely in that case.
		//
		// Note that we store it as an `f64` rather than a `u64` (potentially losing some
		// precision) because we ultimately need the value as an `f64` when dividing bucket weights
		// by it. Storing it as an `f64` avoids doing the additional int -> float conversion in the
		// hot score-calculation path.
		total_valid_points_tracked: f64,
		min_liquidity_offset_history: HistoricalBucketRangeTracker,
		max_liquidity_offset_history: HistoricalBucketRangeTracker,
	}

	impl HistoricalLiquidityTracker {
		pub(super) fn new() -> HistoricalLiquidityTracker {
			HistoricalLiquidityTracker {
				min_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
				max_liquidity_offset_history: HistoricalBucketRangeTracker::new(),
				total_valid_points_tracked: 0.0,
			}
		}

		pub(super) fn from_min_max(
			min_liquidity_offset_history: HistoricalBucketRangeTracker,
			max_liquidity_offset_history: HistoricalBucketRangeTracker,
		) -> HistoricalLiquidityTracker {
			let mut res = HistoricalLiquidityTracker {
				min_liquidity_offset_history,
				max_liquidity_offset_history,
				total_valid_points_tracked: 0.0,
			};
			res.recalculate_valid_point_count();
			res
		}

		pub(super) fn has_datapoints(&self) -> bool {
			self.min_liquidity_offset_history.buckets != [0; 32] ||
				self.max_liquidity_offset_history.buckets != [0; 32]
		}

		pub(super) fn decay_buckets(&mut self, half_lives: f64) {
			let divisor = powf64(2048.0, half_lives) as u64;
			for bucket in self.min_liquidity_offset_history.buckets.iter_mut() {
				*bucket = ((*bucket as u64) * 1024 / divisor) as u16;
			}
			for bucket in self.max_liquidity_offset_history.buckets.iter_mut() {
				*bucket = ((*bucket as u64) * 1024 / divisor) as u16;
			}
			self.recalculate_valid_point_count();
		}

		fn recalculate_valid_point_count(&mut self) {
			let mut total_valid_points_tracked = 0;
			for (min_idx, min_bucket) in self.min_liquidity_offset_history.buckets.iter().enumerate() {
				for max_bucket in self.max_liquidity_offset_history.buckets.iter().take(32 - min_idx) {
					// In testing, raising the weights of buckets to a high power led to better
					// scoring results. Thus, we raise the bucket weights to the 4th power here (by
					// squaring the result of multiplying the weights).
					let mut bucket_weight = (*min_bucket as u64) * (*max_bucket as u64);
					bucket_weight *= bucket_weight;
					total_valid_points_tracked += bucket_weight;
				}
			}
			self.total_valid_points_tracked = total_valid_points_tracked as f64;
		}

		pub(super) fn writeable_min_offset_history(&self) -> &HistoricalBucketRangeTracker {
			&self.min_liquidity_offset_history
		}

		pub(super) fn writeable_max_offset_history(&self) -> &HistoricalBucketRangeTracker {
			&self.max_liquidity_offset_history
		}

		pub(super) fn as_directed<'a>(&'a self, source_less_than_target: bool)
		-> DirectedHistoricalLiquidityTracker<&'a HistoricalLiquidityTracker> {
			DirectedHistoricalLiquidityTracker { source_less_than_target, tracker: self }
		}

		pub(super) fn as_directed_mut<'a>(&'a mut self, source_less_than_target: bool)
		-> DirectedHistoricalLiquidityTracker<&'a mut HistoricalLiquidityTracker> {
			DirectedHistoricalLiquidityTracker { source_less_than_target, tracker: self }
		}
	}

	/// A set of buckets representing the history of where we've seen the minimum- and maximum-
	/// liquidity bounds for a given channel.
	pub(super) struct DirectedHistoricalLiquidityTracker<D: Deref<Target = HistoricalLiquidityTracker>> {
		source_less_than_target: bool,
		tracker: D,
	}

	impl<D: DerefMut<Target = HistoricalLiquidityTracker>> DirectedHistoricalLiquidityTracker<D> {
		pub(super) fn track_datapoint(
			&mut self, min_offset_msat: u64, max_offset_msat: u64, capacity_msat: u64,
		) {
			if self.source_less_than_target {
				self.tracker.min_liquidity_offset_history.track_datapoint(min_offset_msat, capacity_msat);
				self.tracker.max_liquidity_offset_history.track_datapoint(max_offset_msat, capacity_msat);
			} else {
				self.tracker.max_liquidity_offset_history.track_datapoint(min_offset_msat, capacity_msat);
				self.tracker.min_liquidity_offset_history.track_datapoint(max_offset_msat, capacity_msat);
			}
			self.tracker.recalculate_valid_point_count();
		}
	}

	impl<D: Deref<Target = HistoricalLiquidityTracker>> DirectedHistoricalLiquidityTracker<D> {
		pub(super) fn min_liquidity_offset_history_buckets(&self) -> &[u16; 32] {
			if self.source_less_than_target {
				&self.tracker.min_liquidity_offset_history.buckets
			} else {
				&self.tracker.max_liquidity_offset_history.buckets
			}
		}

		pub(super) fn max_liquidity_offset_history_buckets(&self) -> &[u16; 32] {
			if self.source_less_than_target {
				&self.tracker.max_liquidity_offset_history.buckets
			} else {
				&self.tracker.min_liquidity_offset_history.buckets
			}
		}

		#[inline]
		pub(super) fn calculate_success_probability_times_billion(
			&self, params: &ProbabilisticScoringFeeParameters, total_inflight_amount_msat: u64,
			capacity_msat: u64
		) -> Option<u64> {
			// If historical penalties are enabled, we try to calculate a probability of success
			// given our historical distribution of min- and max-liquidity bounds in a channel.
			// To do so, we walk the set of historical liquidity bucket (min, max) combinations
			// (where min_idx < max_idx, as having a minimum above our maximum is an invalid
			// state). For each pair, we calculate the probability as if the bucket's corresponding
			// min- and max- liquidity bounds were our current liquidity bounds and then multiply
			// that probability by the weight of the selected buckets.
			let payment_pos = amount_to_pos(total_inflight_amount_msat, capacity_msat);
			if payment_pos >= POSITION_TICKS { return None; }

			let min_liquidity_offset_history_buckets =
				self.min_liquidity_offset_history_buckets();
			let max_liquidity_offset_history_buckets =
				self.max_liquidity_offset_history_buckets();

			let total_valid_points_tracked = self.tracker.total_valid_points_tracked;
			#[cfg(debug_assertions)] {
				let mut actual_valid_points_tracked = 0;
				for (min_idx, min_bucket) in min_liquidity_offset_history_buckets.iter().enumerate() {
					for max_bucket in max_liquidity_offset_history_buckets.iter().take(32 - min_idx) {
						let mut bucket_weight = (*min_bucket as u64) * (*max_bucket as u64);
						bucket_weight *= bucket_weight;
						actual_valid_points_tracked += bucket_weight;
					}
				}
				assert_eq!(total_valid_points_tracked, actual_valid_points_tracked as f64);
			}

			// If the total valid points is smaller than 1.0 (i.e. 32 in our fixed-point scheme),
			// treat it as if we were fully decayed.
			const FULLY_DECAYED: f64 = BUCKET_FIXED_POINT_ONE as f64 * BUCKET_FIXED_POINT_ONE as f64 *
				BUCKET_FIXED_POINT_ONE as f64 * BUCKET_FIXED_POINT_ONE as f64;
			if total_valid_points_tracked < FULLY_DECAYED.into() {
				return None;
			}

			let mut cumulative_success_prob = 0.0f64;
			// Special-case the 0th min bucket - it generally means we failed a payment, so only
			// consider the highest (i.e. largest-offset-from-max-capacity) max bucket for all
			// points against the 0th min bucket. This avoids the case where we fail to route
			// increasingly lower values over a channel, but treat each failure as a separate
			// datapoint, many of which may have relatively high maximum-available-liquidity
			// values, which will result in us thinking we have some nontrivial probability of
			// routing up to that amount.
			if min_liquidity_offset_history_buckets[0] != 0 {
				// Track the highest max-buckets with any data at all, as well as the highest
				// max-bucket with at least BUCKET_FIXED_POINT_ONE.
				let mut highest_max_bucket_with_points = 0;
				let mut highest_max_bucket_with_full_points = None;
				let mut total_weight = 0;
				for (max_idx, max_bucket) in max_liquidity_offset_history_buckets.iter().enumerate() {
					if *max_bucket >= BUCKET_FIXED_POINT_ONE {
						highest_max_bucket_with_full_points = Some(cmp::max(highest_max_bucket_with_full_points.unwrap_or(0), max_idx));
					}
					if *max_bucket != 0 {
						highest_max_bucket_with_points = cmp::max(highest_max_bucket_with_points, max_idx);
					}
					// In testing, raising the weights of buckets to a high power led to better
					// scoring results. Thus, we raise the bucket weights to the 4th power here (by
					// squaring the result of multiplying the weights), matching the logic in
					// `recalculate_valid_point_count`.
					let bucket_weight = (*max_bucket as u64) * (min_liquidity_offset_history_buckets[0] as u64);
					total_weight += bucket_weight * bucket_weight;
				}
				debug_assert!(total_weight as f64 <= total_valid_points_tracked);
				// Use the highest max-bucket with at least BUCKET_FIXED_POINT_ONE, but if none is
				// available use the highest max-bucket with any non-zero value. This ensures that
				// if we have substantially decayed data we don't end up thinking the highest
				// max-bucket is zero even though we have no points in the 0th max-bucket and do
				// have points elsewhere.
				let selected_max = highest_max_bucket_with_full_points.unwrap_or(highest_max_bucket_with_points);
				let max_bucket_end_pos = BUCKET_START_POS[32 - selected_max] - 1;
				if payment_pos < max_bucket_end_pos {
					let (numerator, denominator) = success_probability_float(payment_pos as u64, 0,
						max_bucket_end_pos as u64, POSITION_TICKS as u64 - 1, params, true);
					let bucket_prob = total_weight as f64 / total_valid_points_tracked;
					cumulative_success_prob += bucket_prob * numerator / denominator;
				}
			}

			for (min_idx, min_bucket) in min_liquidity_offset_history_buckets.iter().enumerate().skip(1) {
				let min_bucket_start_pos = BUCKET_START_POS[min_idx];
				for (max_idx, max_bucket) in max_liquidity_offset_history_buckets.iter().enumerate().take(32 - min_idx) {
					let max_bucket_end_pos = BUCKET_START_POS[32 - max_idx] - 1;
					if payment_pos >= max_bucket_end_pos {
						// Success probability 0, the payment amount may be above the max liquidity
						break;
					}

					// In testing, raising the weights of buckets to a high power led to better
					// scoring results. Thus, we raise the bucket weights to the 4th power here (by
					// squaring the result of multiplying the weights), matching the logic in
					// `recalculate_valid_point_count`.
					let mut bucket_weight = (*min_bucket as u64) * (*max_bucket as u64);
					bucket_weight *= bucket_weight;
					debug_assert!(bucket_weight as f64 <= total_valid_points_tracked);
					let bucket_prob = bucket_weight as f64 / total_valid_points_tracked;

					if payment_pos < min_bucket_start_pos {
						cumulative_success_prob += bucket_prob;
					} else {
						let (numerator, denominator) = success_probability_float(payment_pos as u64,
							min_bucket_start_pos as u64, max_bucket_end_pos as u64,
							POSITION_TICKS as u64 - 1, params, true);
						cumulative_success_prob += bucket_prob * numerator / denominator;
					}
				}
			}

			Some((cumulative_success_prob * (1024.0 * 1024.0 * 1024.0)) as u64)
		}
	}
}
use bucketed_history::{LegacyHistoricalBucketRangeTracker, HistoricalBucketRangeTracker, DirectedHistoricalLiquidityTracker, HistoricalLiquidityTracker};

impl<G: Deref<Target = NetworkGraph<L>>, L: Deref> Writeable for ProbabilisticScorer<G, L> where L::Target: Logger {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		write_tlv_fields!(w, {
			(0, self.channel_liquidities, required),
		});
		Ok(())
	}
}

impl<G: Deref<Target = NetworkGraph<L>>, L: Deref>
ReadableArgs<(ProbabilisticScoringDecayParameters, G, L)> for ProbabilisticScorer<G, L> where L::Target: Logger {
	#[inline]
	fn read<R: Read>(
		r: &mut R, args: (ProbabilisticScoringDecayParameters, G, L)
	) -> Result<Self, DecodeError> {
		let (decay_params, network_graph, logger) = args;
		let mut channel_liquidities = new_hash_map();
		read_tlv_fields!(r, {
			(0, channel_liquidities, required),
		});
		Ok(Self {
			decay_params,
			network_graph,
			logger,
			channel_liquidities,
		})
	}
}

impl Writeable for ChannelLiquidity {
	#[inline]
	fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
		write_tlv_fields!(w, {
			(0, self.min_liquidity_offset_msat, required),
			// 1 was the min_liquidity_offset_history in octile form
			(2, self.max_liquidity_offset_msat, required),
			// 3 was the max_liquidity_offset_history in octile form
			(4, self.last_updated, required),
			(5, self.liquidity_history.writeable_min_offset_history(), required),
			(7, self.liquidity_history.writeable_max_offset_history(), required),
			(9, self.offset_history_last_updated, required),
		});
		Ok(())
	}
}

impl Readable for ChannelLiquidity {
	#[inline]
	fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
		let mut min_liquidity_offset_msat = 0;
		let mut max_liquidity_offset_msat = 0;
		let mut legacy_min_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
		let mut legacy_max_liq_offset_history: Option<LegacyHistoricalBucketRangeTracker> = None;
		let mut min_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
		let mut max_liquidity_offset_history: Option<HistoricalBucketRangeTracker> = None;
		let mut last_updated = Duration::from_secs(0);
		let mut offset_history_last_updated = None;
		read_tlv_fields!(r, {
			(0, min_liquidity_offset_msat, required),
			(1, legacy_min_liq_offset_history, option),
			(2, max_liquidity_offset_msat, required),
			(3, legacy_max_liq_offset_history, option),
			(4, last_updated, required),
			(5, min_liquidity_offset_history, option),
			(7, max_liquidity_offset_history, option),
			(9, offset_history_last_updated, option),
		});

		if min_liquidity_offset_history.is_none() {
			if let Some(legacy_buckets) = legacy_min_liq_offset_history {
				min_liquidity_offset_history = Some(legacy_buckets.into_current());
			} else {
				min_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
			}
		}
		if max_liquidity_offset_history.is_none() {
			if let Some(legacy_buckets) = legacy_max_liq_offset_history {
				max_liquidity_offset_history = Some(legacy_buckets.into_current());
			} else {
				max_liquidity_offset_history = Some(HistoricalBucketRangeTracker::new());
			}
		}
		Ok(Self {
			min_liquidity_offset_msat,
			max_liquidity_offset_msat,
			liquidity_history: HistoricalLiquidityTracker::from_min_max(
				min_liquidity_offset_history.unwrap(), max_liquidity_offset_history.unwrap()
			),
			last_updated,
			offset_history_last_updated: offset_history_last_updated.unwrap_or(last_updated),
		})
	}
}

#[cfg(test)]
mod tests {
	use super::{ChannelLiquidity, HistoricalLiquidityTracker, ProbabilisticScoringFeeParameters, ProbabilisticScoringDecayParameters, ProbabilisticScorer};
	use crate::blinded_path::BlindedHop;
	use crate::util::config::UserConfig;

	use crate::ln::channelmanager;
	use crate::ln::msgs::{ChannelAnnouncement, ChannelUpdate, UnsignedChannelAnnouncement, UnsignedChannelUpdate};
	use crate::routing::gossip::{EffectiveCapacity, NetworkGraph, NodeId};
	use crate::routing::router::{BlindedTail, Path, RouteHop, CandidateRouteHop, PublicHopCandidate};
	use crate::routing::scoring::{ChannelUsage, ScoreLookUp, ScoreUpdate};
	use crate::util::ser::{ReadableArgs, Writeable};
	use crate::util::test_utils::{self, TestLogger};

	use bitcoin::constants::ChainHash;
	use bitcoin::hashes::Hash;
	use bitcoin::hashes::sha256d::Hash as Sha256dHash;
	use bitcoin::network::Network;
	use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
	use core::time::Duration;
	use crate::io;

	fn source_privkey() -> SecretKey {
		SecretKey::from_slice(&[42; 32]).unwrap()
	}

	fn target_privkey() -> SecretKey {
		SecretKey::from_slice(&[43; 32]).unwrap()
	}

	fn source_pubkey() -> PublicKey {
		let secp_ctx = Secp256k1::new();
		PublicKey::from_secret_key(&secp_ctx, &source_privkey())
	}

	fn target_pubkey() -> PublicKey {
		let secp_ctx = Secp256k1::new();
		PublicKey::from_secret_key(&secp_ctx, &target_privkey())
	}

	fn source_node_id() -> NodeId {
		NodeId::from_pubkey(&source_pubkey())
	}

	fn target_node_id() -> NodeId {
		NodeId::from_pubkey(&target_pubkey())
	}

	// `ProbabilisticScorer` tests

	fn sender_privkey() -> SecretKey {
		SecretKey::from_slice(&[41; 32]).unwrap()
	}

	fn recipient_privkey() -> SecretKey {
		SecretKey::from_slice(&[45; 32]).unwrap()
	}

	fn sender_pubkey() -> PublicKey {
		let secp_ctx = Secp256k1::new();
		PublicKey::from_secret_key(&secp_ctx, &sender_privkey())
	}

	fn recipient_pubkey() -> PublicKey {
		let secp_ctx = Secp256k1::new();
		PublicKey::from_secret_key(&secp_ctx, &recipient_privkey())
	}

	fn recipient_node_id() -> NodeId {
		NodeId::from_pubkey(&recipient_pubkey())
	}

	fn network_graph(logger: &TestLogger) -> NetworkGraph<&TestLogger> {
		let mut network_graph = NetworkGraph::new(Network::Testnet, logger);
		add_channel(&mut network_graph, 42, source_privkey(), target_privkey());
		add_channel(&mut network_graph, 43, target_privkey(), recipient_privkey());

		network_graph
	}

	fn add_channel(
		network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_1_key: SecretKey,
		node_2_key: SecretKey
	) {
		let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
		let node_1_secret = &SecretKey::from_slice(&[39; 32]).unwrap();
		let node_2_secret = &SecretKey::from_slice(&[40; 32]).unwrap();
		let secp_ctx = Secp256k1::new();
		let unsigned_announcement = UnsignedChannelAnnouncement {
			features: channelmanager::provided_channel_features(&UserConfig::default()),
			chain_hash: genesis_hash,
			short_channel_id,
			node_id_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_key)),
			node_id_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_key)),
			bitcoin_key_1: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_1_secret)),
			bitcoin_key_2: NodeId::from_pubkey(&PublicKey::from_secret_key(&secp_ctx, &node_2_secret)),
			excess_data: Vec::new(),
		};
		let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
		let signed_announcement = ChannelAnnouncement {
			node_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_key),
			node_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_key),
			bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, &node_1_secret),
			bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, &node_2_secret),
			contents: unsigned_announcement,
		};
		let chain_source: Option<&crate::util::test_utils::TestChainSource> = None;
		network_graph.update_channel_from_announcement(
			&signed_announcement, &chain_source).unwrap();
		update_channel(network_graph, short_channel_id, node_1_key, 0, 1_000, 100);
		update_channel(network_graph, short_channel_id, node_2_key, 1, 0, 100);
	}

	fn update_channel(
		network_graph: &mut NetworkGraph<&TestLogger>, short_channel_id: u64, node_key: SecretKey,
		channel_flags: u8, htlc_maximum_msat: u64, timestamp: u32,
	) {
		let genesis_hash = ChainHash::using_genesis_block(Network::Testnet);
		let secp_ctx = Secp256k1::new();
		let unsigned_update = UnsignedChannelUpdate {
			chain_hash: genesis_hash,
			short_channel_id,
			timestamp,
			message_flags: 1, // Only must_be_one
			channel_flags,
			cltv_expiry_delta: 18,
			htlc_minimum_msat: 0,
			htlc_maximum_msat,
			fee_base_msat: 1,
			fee_proportional_millionths: 0,
			excess_data: Vec::new(),
		};
		let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_update.encode()[..])[..]);
		let signed_update = ChannelUpdate {
			signature: secp_ctx.sign_ecdsa(&msghash, &node_key),
			contents: unsigned_update,
		};
		network_graph.update_channel(&signed_update).unwrap();
	}

	fn path_hop(pubkey: PublicKey, short_channel_id: u64, fee_msat: u64) -> RouteHop {
		let config = UserConfig::default();
		RouteHop {
			pubkey,
			node_features: channelmanager::provided_node_features(&config),
			short_channel_id,
			channel_features: channelmanager::provided_channel_features(&config),
			fee_msat,
			cltv_expiry_delta: 18,
			maybe_announced_channel: true,
		}
	}

	fn payment_path_for_amount(amount_msat: u64) -> Path {
		Path {
			hops: vec![
				path_hop(source_pubkey(), 41, 1),
				path_hop(target_pubkey(), 42, 2),
				path_hop(recipient_pubkey(), 43, amount_msat),
			], blinded_tail: None,
		}
	}

	#[test]
	fn liquidity_bounds_directed_from_lowest_node_id() {
		let logger = TestLogger::new();
		let last_updated = Duration::ZERO;
		let offset_history_last_updated = Duration::ZERO;
		let network_graph = network_graph(&logger);
		let decay_params = ProbabilisticScoringDecayParameters::default();
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
			.with_channel(42,
				ChannelLiquidity {
					min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
					last_updated, offset_history_last_updated,
					liquidity_history: HistoricalLiquidityTracker::new(),
				})
			.with_channel(43,
				ChannelLiquidity {
					min_liquidity_offset_msat: 700, max_liquidity_offset_msat: 100,
					last_updated, offset_history_last_updated,
					liquidity_history: HistoricalLiquidityTracker::new(),
				});
		let source = source_node_id();
		let target = target_node_id();
		let recipient = recipient_node_id();
		assert!(source > target);
		assert!(target < recipient);

		// Update minimum liquidity.

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 100);
		assert_eq!(liquidity.max_liquidity_msat(), 300);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 700);
		assert_eq!(liquidity.max_liquidity_msat(), 900);

		scorer.channel_liquidities.get_mut(&42).unwrap()
			.as_directed_mut(&source, &target, 1_000)
			.set_min_liquidity_msat(200, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 200);
		assert_eq!(liquidity.max_liquidity_msat(), 300);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 700);
		assert_eq!(liquidity.max_liquidity_msat(), 800);

		// Update maximum liquidity.

		let liquidity = scorer.channel_liquidities.get(&43).unwrap()
			.as_directed(&target, &recipient, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 700);
		assert_eq!(liquidity.max_liquidity_msat(), 900);

		let liquidity = scorer.channel_liquidities.get(&43).unwrap()
			.as_directed(&recipient, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 100);
		assert_eq!(liquidity.max_liquidity_msat(), 300);

		scorer.channel_liquidities.get_mut(&43).unwrap()
			.as_directed_mut(&target, &recipient, 1_000)
			.set_max_liquidity_msat(200, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&43).unwrap()
			.as_directed(&target, &recipient, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 0);
		assert_eq!(liquidity.max_liquidity_msat(), 200);

		let liquidity = scorer.channel_liquidities.get(&43).unwrap()
			.as_directed(&recipient, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 800);
		assert_eq!(liquidity.max_liquidity_msat(), 1000);
	}

	#[test]
	fn resets_liquidity_upper_bound_when_crossed_by_lower_bound() {
		let logger = TestLogger::new();
		let last_updated = Duration::ZERO;
		let offset_history_last_updated = Duration::ZERO;
		let network_graph = network_graph(&logger);
		let decay_params = ProbabilisticScoringDecayParameters::default();
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
			.with_channel(42,
				ChannelLiquidity {
					min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
					last_updated, offset_history_last_updated,
					liquidity_history: HistoricalLiquidityTracker::new(),
				});
		let source = source_node_id();
		let target = target_node_id();
		assert!(source > target);

		// Check initial bounds.
		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 400);
		assert_eq!(liquidity.max_liquidity_msat(), 800);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 200);
		assert_eq!(liquidity.max_liquidity_msat(), 600);

		// Reset from source to target.
		scorer.channel_liquidities.get_mut(&42).unwrap()
			.as_directed_mut(&source, &target, 1_000)
			.set_min_liquidity_msat(900, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 900);
		assert_eq!(liquidity.max_liquidity_msat(), 1_000);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 0);
		assert_eq!(liquidity.max_liquidity_msat(), 100);

		// Reset from target to source.
		scorer.channel_liquidities.get_mut(&42).unwrap()
			.as_directed_mut(&target, &source, 1_000)
			.set_min_liquidity_msat(400, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 0);
		assert_eq!(liquidity.max_liquidity_msat(), 600);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 400);
		assert_eq!(liquidity.max_liquidity_msat(), 1_000);
	}

	#[test]
	fn resets_liquidity_lower_bound_when_crossed_by_upper_bound() {
		let logger = TestLogger::new();
		let last_updated = Duration::ZERO;
		let offset_history_last_updated = Duration::ZERO;
		let network_graph = network_graph(&logger);
		let decay_params = ProbabilisticScoringDecayParameters::default();
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
			.with_channel(42,
				ChannelLiquidity {
					min_liquidity_offset_msat: 200, max_liquidity_offset_msat: 400,
					last_updated, offset_history_last_updated,
					liquidity_history: HistoricalLiquidityTracker::new(),
				});
		let source = source_node_id();
		let target = target_node_id();
		assert!(source > target);

		// Check initial bounds.
		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 400);
		assert_eq!(liquidity.max_liquidity_msat(), 800);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 200);
		assert_eq!(liquidity.max_liquidity_msat(), 600);

		// Reset from source to target.
		scorer.channel_liquidities.get_mut(&42).unwrap()
			.as_directed_mut(&source, &target, 1_000)
			.set_max_liquidity_msat(300, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 0);
		assert_eq!(liquidity.max_liquidity_msat(), 300);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 700);
		assert_eq!(liquidity.max_liquidity_msat(), 1_000);

		// Reset from target to source.
		scorer.channel_liquidities.get_mut(&42).unwrap()
			.as_directed_mut(&target, &source, 1_000)
			.set_max_liquidity_msat(600, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 400);
		assert_eq!(liquidity.max_liquidity_msat(), 1_000);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&target, &source, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 0);
		assert_eq!(liquidity.max_liquidity_msat(), 600);
	}

	#[test]
	fn increased_penalty_nearing_liquidity_upper_bound() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters::default();
		let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();

		let usage = ChannelUsage {
			amount_msat: 1_024,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
		};
		let network_graph = network_graph.read_only();
		let channel = network_graph.channel(42).unwrap();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 10_240, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 102_400, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 47);
		let usage = ChannelUsage { amount_msat: 1_023_999, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);

		let usage = ChannelUsage {
			amount_msat: 128,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);
		let usage = ChannelUsage { amount_msat: 256, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 125);
		let usage = ChannelUsage { amount_msat: 374, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 198);
		let usage = ChannelUsage { amount_msat: 512, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
		let usage = ChannelUsage { amount_msat: 640, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 425);
		let usage = ChannelUsage { amount_msat: 768, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);
		let usage = ChannelUsage { amount_msat: 896, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 902);
	}

	#[test]
	fn constant_penalty_outside_liquidity_bounds() {
		let logger = TestLogger::new();
		let last_updated = Duration::ZERO;
		let offset_history_last_updated = Duration::ZERO;
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			..ProbabilisticScoringDecayParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger)
			.with_channel(42,
				ChannelLiquidity {
					min_liquidity_offset_msat: 40, max_liquidity_offset_msat: 40,
					last_updated, offset_history_last_updated,
					liquidity_history: HistoricalLiquidityTracker::new(),
				});
		let source = source_node_id();

		let usage = ChannelUsage {
			amount_msat: 39,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 100, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 50, ..usage };
		assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
		let usage = ChannelUsage { amount_msat: 61, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
	}

	#[test]
	fn does_not_further_penalize_own_channel() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 500,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let failed_path = payment_path_for_amount(500);
		let successful_path = payment_path_for_amount(200);
		let channel = &network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 41,
		});

		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);

		scorer.payment_path_failed(&failed_path, 41, Duration::ZERO);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);

		scorer.payment_path_successful(&successful_path, Duration::ZERO);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
	}

	#[test]
	fn sets_liquidity_lower_bound_on_downstream_failure() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();
		let path = payment_path_for_amount(500);

		let usage = ChannelUsage {
			amount_msat: 250,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
		let usage = ChannelUsage { amount_msat: 500, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
		let usage = ChannelUsage { amount_msat: 750, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);

		scorer.payment_path_failed(&path, 43, Duration::ZERO);

		let usage = ChannelUsage { amount_msat: 250, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 500, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 750, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
	}

	#[test]
	fn sets_liquidity_upper_bound_on_failure() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();
		let path = payment_path_for_amount(500);

		let usage = ChannelUsage {
			amount_msat: 250,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
		let usage = ChannelUsage { amount_msat: 500, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 301);
		let usage = ChannelUsage { amount_msat: 750, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 602);

		scorer.payment_path_failed(&path, 42, Duration::ZERO);

		let usage = ChannelUsage { amount_msat: 250, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);
		let usage = ChannelUsage { amount_msat: 500, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
		let usage = ChannelUsage { amount_msat: 750, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
	}

	#[test]
	fn ignores_channels_after_removed_failed_channel() {
		// Previously, if we'd tried to send over a channel which was removed from the network
		// graph before we call `payment_path_failed` (which is the default if the we get a "no
		// such channel" error in the `InvoicePayer`), we would call `failed_downstream` on all
		// channels in the route, even ones which they payment never reached. This tests to ensure
		// we do not score such channels.
		let secp_ctx = Secp256k1::new();
		let logger = TestLogger::new();
		let mut network_graph = NetworkGraph::new(Network::Testnet, &logger);
		let secret_a = SecretKey::from_slice(&[42; 32]).unwrap();
		let secret_b = SecretKey::from_slice(&[43; 32]).unwrap();
		let secret_c = SecretKey::from_slice(&[44; 32]).unwrap();
		let secret_d = SecretKey::from_slice(&[45; 32]).unwrap();
		add_channel(&mut network_graph, 42, secret_a, secret_b);
		// Don't add the channel from B -> C.
		add_channel(&mut network_graph, 44, secret_c, secret_d);

		let pub_a = PublicKey::from_secret_key(&secp_ctx, &secret_a);
		let pub_b = PublicKey::from_secret_key(&secp_ctx, &secret_b);
		let pub_c = PublicKey::from_secret_key(&secp_ctx, &secret_c);
		let pub_d = PublicKey::from_secret_key(&secp_ctx, &secret_d);

		let path = vec![
			path_hop(pub_b, 42, 1),
			path_hop(pub_c, 43, 2),
			path_hop(pub_d, 44, 100),
		];

		let node_a = NodeId::from_pubkey(&pub_a);
		let node_b = NodeId::from_pubkey(&pub_b);
		let node_c = NodeId::from_pubkey(&pub_c);

		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);

		let usage = ChannelUsage {
			amount_msat: 250,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_a).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
		// Note that a default liquidity bound is used for B -> C as no channel exists
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_b).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 43,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
		let channel = network_graph.read_only().channel(44).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_c).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 44,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);

		scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 43, Duration::ZERO);

		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_a).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80);
		// Note that a default liquidity bound is used for B -> C as no channel exists
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_b).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 43,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
		let channel = network_graph.read_only().channel(44).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&node_c).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 44,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 128);
	}

	#[test]
	fn reduces_liquidity_upper_bound_along_path_on_success() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 250,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let network_graph = network_graph.read_only().channels().clone();
		let channel_42 = network_graph.get(&42).unwrap();
		let channel_43 = network_graph.get(&43).unwrap();
		let (info, _) = channel_42.as_directed_from(&source).unwrap();
		let candidate_41 = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 41,
		});
		let (info, target) = channel_42.as_directed_from(&source).unwrap();
		let candidate_42 = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		let (info, _) = channel_43.as_directed_from(&target).unwrap();
		let candidate_43 = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 43,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
		assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 128);
		assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 128);

		scorer.payment_path_successful(&payment_path_for_amount(500), Duration::ZERO);

		assert_eq!(scorer.channel_penalty_msat(&candidate_41, usage, &params), 128);
		assert_eq!(scorer.channel_penalty_msat(&candidate_42, usage, &params), 300);
		assert_eq!(scorer.channel_penalty_msat(&candidate_43, usage, &params), 300);
	}

	#[test]
	fn decays_liquidity_bounds_over_time() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(10),
			..ProbabilisticScoringDecayParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();

		let usage = ChannelUsage {
			amount_msat: 0,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 1_023, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);

		scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
		scorer.payment_path_failed(&payment_path_for_amount(128), 43, Duration::ZERO);

		// Initial penalties
		let usage = ChannelUsage { amount_msat: 128, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 256, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 93);
		let usage = ChannelUsage { amount_msat: 768, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_479);
		let usage = ChannelUsage { amount_msat: 896, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		// Half decay (i.e., three-quarter life)
		scorer.time_passed(Duration::from_secs(5));
		let usage = ChannelUsage { amount_msat: 128, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 22);
		let usage = ChannelUsage { amount_msat: 256, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 106);
		let usage = ChannelUsage { amount_msat: 768, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 921);
		let usage = ChannelUsage { amount_msat: 896, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		// One decay (i.e., half life)
		scorer.time_passed(Duration::from_secs(10));
		let usage = ChannelUsage { amount_msat: 64, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 128, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 34);
		let usage = ChannelUsage { amount_msat: 896, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 1_970);
		let usage = ChannelUsage { amount_msat: 960, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		// Fully decay liquidity lower bound.
		scorer.time_passed(Duration::from_secs(10 * 8));
		let usage = ChannelUsage { amount_msat: 0, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 1, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 1_023, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2_000);
		let usage = ChannelUsage { amount_msat: 1_024, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		// Fully decay liquidity upper bound.
		scorer.time_passed(Duration::from_secs(10 * 9));
		let usage = ChannelUsage { amount_msat: 0, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 1_024, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		scorer.time_passed(Duration::from_secs(10 * 10));
		let usage = ChannelUsage { amount_msat: 0, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
		let usage = ChannelUsage { amount_msat: 1_024, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
	}

	#[test]
	fn restricts_liquidity_bounds_after_decay() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(10),
			..ProbabilisticScoringDecayParameters::default()
		};
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 512,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});

		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);

		// More knowledge gives higher confidence (256, 768), meaning a lower penalty.
		scorer.payment_path_failed(&payment_path_for_amount(768), 42, Duration::ZERO);
		scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::ZERO);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 281);

		// Decaying knowledge gives less confidence (128, 896), meaning a higher penalty.
		scorer.time_passed(Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 291);

		// Reducing the upper bound gives more confidence (128, 832) that the payment amount (512)
		// is closer to the upper bound, meaning a higher penalty.
		scorer.payment_path_successful(&payment_path_for_amount(64), Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 331);

		// Increasing the lower bound gives more confidence (256, 832) that the payment amount (512)
		// is closer to the lower bound, meaning a lower penalty.
		scorer.payment_path_failed(&payment_path_for_amount(256), 43, Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 245);

		// Further decaying affects the lower bound more than the upper bound (128, 928).
		scorer.time_passed(Duration::from_secs(20));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 280);
	}

	#[test]
	fn restores_persisted_liquidity_bounds() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(10),
			..ProbabilisticScoringDecayParameters::default()
		};
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 500,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};

		scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		scorer.time_passed(Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 473);

		scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);

		let mut serialized_scorer = Vec::new();
		scorer.write(&mut serialized_scorer).unwrap();

		let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
		let deserialized_scorer =
			<ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
		assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 300);
	}

	fn do_decays_persisted_liquidity_bounds(decay_before_reload: bool) {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(10),
			..ProbabilisticScoringDecayParameters::zero_penalty()
		};
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 500,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};

		scorer.payment_path_failed(&payment_path_for_amount(500), 42, Duration::ZERO);
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		if decay_before_reload {
			scorer.time_passed(Duration::from_secs(10));
		}

		let mut serialized_scorer = Vec::new();
		scorer.write(&mut serialized_scorer).unwrap();

		let mut serialized_scorer = io::Cursor::new(&serialized_scorer);
		let mut deserialized_scorer =
			<ProbabilisticScorer<_, _>>::read(&mut serialized_scorer, (decay_params, &network_graph, &logger)).unwrap();
		if !decay_before_reload {
			scorer.time_passed(Duration::from_secs(10));
			deserialized_scorer.time_passed(Duration::from_secs(10));
		}
		assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 473);

		scorer.payment_path_failed(&payment_path_for_amount(250), 43, Duration::from_secs(10));
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);

		deserialized_scorer.time_passed(Duration::from_secs(20));
		assert_eq!(deserialized_scorer.channel_penalty_msat(&candidate, usage, &params), 370);
	}

	#[test]
	fn decays_persisted_liquidity_bounds() {
		do_decays_persisted_liquidity_bounds(false);
		do_decays_persisted_liquidity_bounds(true);
	}

	#[test]
	fn scores_realistic_payments() {
		// Shows the scores of "realistic" sends of 100k sats over channels of 1-10m sats (with a
		// 50k sat reserve).
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters::default();
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();

		let usage = ChannelUsage {
			amount_msat: 100_000_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 950_000_000, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 42_252);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 36_005);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 2_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 32_851);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 3_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 30_832);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 4_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 29_886);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 5_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 28_939);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 6_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 28_435);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_450_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 27_993);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 7_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 27_993);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 8_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 27_488);
		let usage = ChannelUsage {
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 9_950_000_000, htlc_maximum_msat: 1_000 }, ..usage
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 27_047);
	}

	#[test]
	fn adds_base_penalty_to_liquidity_penalty() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 128,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
		};

		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 58);

		let params = ProbabilisticScoringFeeParameters {
			base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
			anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558);

		let params = ProbabilisticScoringFeeParameters {
			base_penalty_msat: 500, liquidity_penalty_multiplier_msat: 1_000,
			base_penalty_amount_multiplier_msat: (1 << 30),
			anti_probing_penalty_msat: 0, ..ProbabilisticScoringFeeParameters::zero_penalty()
		};

		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 558 + 128);
	}

	#[test]
	fn adds_amount_penalty_to_liquidity_penalty() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 512_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
		};

		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			liquidity_penalty_amount_multiplier_msat: 0,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);

		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			liquidity_penalty_amount_multiplier_msat: 256,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 337);
	}

	#[test]
	fn calculates_log10_without_overflowing_u64_max_value() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: u64::max_value(),
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Infinite,
		};
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 40_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters::zero_penalty();
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		let scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 80_000);
	}

	#[test]
	fn accounts_for_inflight_htlc_usage() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			considered_impossible_penalty_msat: u64::max_value(),
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();

		let usage = ChannelUsage {
			amount_msat: 750,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_000, htlc_maximum_msat: 1_000 },
		};
		let network_graph = network_graph.read_only();
		let channel = network_graph.channel(42).unwrap();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_ne!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());

		let usage = ChannelUsage { inflight_htlc_msat: 251, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
	}

	#[test]
	fn removes_uncertainity_when_exact_liquidity_known() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters::default();
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);
		let source = source_node_id();

		let base_penalty_msat = params.base_penalty_msat;
		let usage = ChannelUsage {
			amount_msat: 750,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::ExactLiquidity { liquidity_msat: 1_000 },
		};
		let network_graph = network_graph.read_only();
		let channel = network_graph.channel(42).unwrap();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);

		let usage = ChannelUsage { amount_msat: 1_000, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), base_penalty_msat);

		let usage = ChannelUsage { amount_msat: 1_001, ..usage };
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), u64::max_value());
	}

	#[test]
	fn remembers_historical_failures() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			historical_liquidity_penalty_multiplier_msat: 1024,
			historical_liquidity_penalty_amount_multiplier_msat: 1024,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(60 * 60),
			historical_no_updates_half_life: Duration::from_secs(10),
		};
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();
		let target = target_node_id();

		let usage = ChannelUsage {
			amount_msat: 100,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
		};
		let usage_1 = ChannelUsage {
			amount_msat: 1,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
		};

		{
			let network_graph = network_graph.read_only();
			let channel = network_graph.channel(42).unwrap();
			let (info, _) = channel.as_directed_from(&source).unwrap();
			let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
				info,
				short_channel_id: 42,
			});

			// With no historical data the normal liquidity penalty calculation is used.
			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 135);
		}
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
		None);
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params, false),
		None);

		scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::ZERO);
		{
			let network_graph = network_graph.read_only();
			let channel = network_graph.channel(42).unwrap();
			let (info, _) = channel.as_directed_from(&source).unwrap();
			let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
				info,
				short_channel_id: 42,
			});

			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
			assert_eq!(scorer.channel_penalty_msat(&candidate, usage_1, &params), 220);
		}
		// The "it failed" increment is 32, where the probability should lie several buckets into
		// the first octile.
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
		assert!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params, false)
			.unwrap() > 0.35);
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 500, &params, false),
			Some(0.0));

		// Even after we tell the scorer we definitely have enough available liquidity, it will
		// still remember that there was some failure in the past, and assign a non-0 penalty.
		scorer.payment_path_failed(&payment_path_for_amount(1000), 43, Duration::ZERO);
		{
			let network_graph = network_graph.read_only();
			let channel = network_graph.channel(42).unwrap();
			let (info, _) = channel.as_directed_from(&source).unwrap();
			let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
				info,
				short_channel_id: 42,
			});

			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 83);
		}
		// The first points should be decayed just slightly and the last bucket has a new point.
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			Some(([31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32])));

		// The exact success probability is a bit complicated and involves integer rounding, so we
		// simply check bounds here.
		let five_hundred_prob =
			scorer.historical_estimated_payment_success_probability(42, &target, 500, &params, false).unwrap();
		assert!(five_hundred_prob > 0.61, "{}", five_hundred_prob);
		assert!(five_hundred_prob < 0.62, "{}", five_hundred_prob);
		let one_prob =
			scorer.historical_estimated_payment_success_probability(42, &target, 1, &params, false).unwrap();
		assert!(one_prob < 0.89, "{}", one_prob);
		assert!(one_prob > 0.88, "{}", one_prob);

		// Advance the time forward 16 half-lives (which the docs claim will ensure all data is
		// gone), and check that we're back to where we started.
		scorer.time_passed(Duration::from_secs(10 * 16));
		{
			let network_graph = network_graph.read_only();
			let channel = network_graph.channel(42).unwrap();
			let (info, _) = channel.as_directed_from(&source).unwrap();
			let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
				info,
				short_channel_id: 42,
			});

			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 135);
		}
		// Once fully decayed we still have data, but its all-0s. In the future we may remove the
		// data entirely instead.
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			Some(([0; 32], [0; 32])));
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 1, &params, false), None);

		let usage = ChannelUsage {
			amount_msat: 100,
			inflight_htlc_msat: 1024,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_024 },
		};
		scorer.payment_path_failed(&payment_path_for_amount(1), 42, Duration::from_secs(10 * 16));
		{
			let network_graph = network_graph.read_only();
			let channel = network_graph.channel(42).unwrap();
			let (info, _) = channel.as_directed_from(&source).unwrap();
			let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
				info,
				short_channel_id: 42,
			});

			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);

			let usage = ChannelUsage {
				amount_msat: 1,
				inflight_htlc_msat: 0,
				effective_capacity: EffectiveCapacity::AdvertisedMaxHTLC { amount_msat: 0 },
			};
			assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 2048);
		}

		// Advance to decay all liquidity offsets to zero.
		scorer.time_passed(Duration::from_secs(10 * (16 + 60 * 60)));

		// Once even the bounds have decayed information about the channel should be removed
		// entirely.
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			None);

		// Use a path in the opposite direction, which have zero for htlc_maximum_msat. This will
		// ensure that the effective capacity is zero to test division-by-zero edge cases.
		let path = vec![
			path_hop(target_pubkey(), 43, 2),
			path_hop(source_pubkey(), 42, 1),
			path_hop(sender_pubkey(), 41, 0),
		];
		scorer.payment_path_failed(&Path { hops: path, blinded_tail: None }, 42, Duration::from_secs(10 * (16 + 60 * 60)));
	}

	#[test]
	fn adds_anti_probing_penalty() {
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let source = source_node_id();
		let params = ProbabilisticScoringFeeParameters {
			anti_probing_penalty_msat: 500,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let scorer = ProbabilisticScorer::new(ProbabilisticScoringDecayParameters::default(), &network_graph, &logger);

		// Check we receive no penalty for a low htlc_maximum_msat.
		let usage = ChannelUsage {
			amount_msat: 512_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_000 },
		};
		let network_graph = network_graph.read_only();
		let channel = network_graph.channel(42).unwrap();
		let (info, _) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);

		// Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity.
		let usage = ChannelUsage {
			amount_msat: 512_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 1_024_000 },
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);

		// Check we receive anti-probing penalty for htlc_maximum_msat == channel_capacity/2.
		let usage = ChannelUsage {
			amount_msat: 512_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 512_000 },
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 500);

		// Check we receive no anti-probing penalty for htlc_maximum_msat == channel_capacity/2 - 1.
		let usage = ChannelUsage {
			amount_msat: 512_000,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024_000, htlc_maximum_msat: 511_999 },
		};
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 0);
	}

	#[test]
	fn scores_with_blinded_path() {
		// Make sure we'll account for a blinded path's final_value_msat in scoring
		let logger = TestLogger::new();
		let network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			liquidity_penalty_multiplier_msat: 1_000,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters::default();
		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();
		let usage = ChannelUsage {
			amount_msat: 512,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat: 1_024, htlc_maximum_msat: 1_000 },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, target) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 300);

		let mut path = payment_path_for_amount(768);
		let recipient_hop = path.hops.pop().unwrap();
		path.blinded_tail = Some(BlindedTail {
			hops: vec![BlindedHop { blinded_node_id: test_utils::pubkey(44), encrypted_payload: Vec::new() }],
			blinding_point: test_utils::pubkey(42),
			excess_final_cltv_expiry_delta: recipient_hop.cltv_expiry_delta,
			final_value_msat: recipient_hop.fee_msat,
		});

		// Check the liquidity before and after scoring payment failures to ensure the blinded path's
		// final value is taken into account.
		assert!(scorer.channel_liquidities.get(&42).is_none());

		scorer.payment_path_failed(&path, 42, Duration::ZERO);
		path.blinded_tail.as_mut().unwrap().final_value_msat = 256;
		scorer.payment_path_failed(&path, 43, Duration::ZERO);

		let liquidity = scorer.channel_liquidities.get(&42).unwrap()
			.as_directed(&source, &target, 1_000);
		assert_eq!(liquidity.min_liquidity_msat(), 256);
		assert_eq!(liquidity.max_liquidity_msat(), 768);
	}

	#[test]
	fn realistic_historical_failures() {
		// The motivation for the unequal sized buckets came largely from attempting to pay 10k
		// sats over a one bitcoin channel. This tests that case explicitly, ensuring that we score
		// properly.
		let logger = TestLogger::new();
		let mut network_graph = network_graph(&logger);
		let params = ProbabilisticScoringFeeParameters {
			historical_liquidity_penalty_multiplier_msat: 1024,
			historical_liquidity_penalty_amount_multiplier_msat: 1024,
			..ProbabilisticScoringFeeParameters::zero_penalty()
		};
		let decay_params = ProbabilisticScoringDecayParameters {
			liquidity_offset_half_life: Duration::from_secs(60 * 60),
			historical_no_updates_half_life: Duration::from_secs(10),
			..ProbabilisticScoringDecayParameters::default()
		};

		let capacity_msat = 100_000_000_000;
		update_channel(&mut network_graph, 42, source_privkey(), 0, capacity_msat, 200);
		update_channel(&mut network_graph, 42, target_privkey(), 1, capacity_msat, 200);

		let mut scorer = ProbabilisticScorer::new(decay_params, &network_graph, &logger);
		let source = source_node_id();

		let mut amount_msat = 10_000_000;
		let usage = ChannelUsage {
			amount_msat,
			inflight_htlc_msat: 0,
			effective_capacity: EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: capacity_msat },
		};
		let channel = network_graph.read_only().channel(42).unwrap().to_owned();
		let (info, target) = channel.as_directed_from(&source).unwrap();
		let candidate = CandidateRouteHop::PublicHop(PublicHopCandidate {
			info,
			short_channel_id: 42,
		});
		// With no historical data the normal liquidity penalty calculation is used, which results
		// in a success probability of ~82%.
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params), 910);
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			None);
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, 42, &params, false),
			None);

		// Fail to pay once, and then check the buckets and penalty.
		scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
		// The penalty should be the maximum penalty, as the payment we're scoring is now in the
		// same bucket which is the only maximum datapoint.
		assert_eq!(scorer.channel_penalty_msat(&candidate, usage, &params),
			2048 + 2048 * amount_msat / super::AMOUNT_PENALTY_DIVISOR);
		// The "it failed" increment is 32, which we should apply to the first upper-bound (between
		// 6k sats and 12k sats).
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			Some(([32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
		// The success probability estimate itself should be zero.
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params, false),
			Some(0.0));

		// Now test again with the amount in the bottom bucket.
		amount_msat /= 2;
		// The new amount is entirely within the only minimum bucket with score, so the probability
		// we assign is 1/2.
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params, false),
			Some(0.5));

		// ...but once we see a failure, we consider the payment to be substantially less likely,
		// even though not a probability of zero as we still look at the second max bucket which
		// now shows 31.
		scorer.payment_path_failed(&payment_path_for_amount(amount_msat), 42, Duration::ZERO);
		assert_eq!(scorer.historical_estimated_channel_liquidity_probabilities(42, &target),
			Some(([63, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
				[32, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])));
		assert_eq!(scorer.historical_estimated_payment_success_probability(42, &target, amount_msat, &params, false),
			Some(0.0));
	}
}

#[cfg(ldk_bench)]
pub mod benches {
	use super::*;
	use criterion::Criterion;
	use crate::routing::router::{bench_utils, RouteHop};
	use crate::util::test_utils::TestLogger;
	use crate::types::features::{ChannelFeatures, NodeFeatures};

	pub fn decay_100k_channel_bounds(bench: &mut Criterion) {
		let logger = TestLogger::new();
		let (network_graph, mut scorer) = bench_utils::read_graph_scorer(&logger).unwrap();
		let mut cur_time = Duration::ZERO;
			cur_time += Duration::from_millis(1);
			scorer.time_passed(cur_time);
		bench.bench_function("decay_100k_channel_bounds", |b| b.iter(|| {
			cur_time += Duration::from_millis(1);
			scorer.time_passed(cur_time);
		}));
	}
}