1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.

//! Utilities which allow users to block on some future notification from LDK. These are
//! specifically used by [`ChannelManager`] to allow waiting until the [`ChannelManager`] needs to
//! be re-persisted.
//!
//! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager

use alloc::sync::Arc;
use core::mem;
use crate::sync::Mutex;

use crate::prelude::*;

#[cfg(feature = "std")]
use crate::sync::Condvar;
#[cfg(feature = "std")]
use std::time::Duration;

use core::future::Future as StdFuture;
use core::task::{Context, Poll};
use core::pin::Pin;


/// Used to signal to one of many waiters that the condition they're waiting on has happened.
pub(crate) struct Notifier {
	notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
}

impl Notifier {
	pub(crate) fn new() -> Self {
		Self {
			notify_pending: Mutex::new((false, None)),
		}
	}

	/// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
	pub(crate) fn notify(&self) {
		let mut lock = self.notify_pending.lock().unwrap();
		if let Some(future_state) = &lock.1 {
			if complete_future(future_state) {
				lock.1 = None;
				return;
			}
		}
		lock.0 = true;
	}

	/// Gets a [`Future`] that will get woken up with any waiters
	pub(crate) fn get_future(&self) -> Future {
		let mut lock = self.notify_pending.lock().unwrap();
		if let Some(existing_state) = &lock.1 {
			if existing_state.lock().unwrap().callbacks_made {
				// If the existing `FutureState` has completed and actually made callbacks,
				// consider the notification flag to have been cleared and reset the future state.
				lock.1.take();
				lock.0 = false;
			}
		}
		if let Some(existing_state) = &lock.1 {
			Future { state: Arc::clone(&existing_state) }
		} else {
			let state = Arc::new(Mutex::new(FutureState {
				callbacks: Vec::new(),
				callbacks_with_state: Vec::new(),
				complete: lock.0,
				callbacks_made: false,
			}));
			lock.1 = Some(Arc::clone(&state));
			Future { state }
		}
	}

	#[cfg(any(test, feature = "_test_utils"))]
	pub fn notify_pending(&self) -> bool {
		self.notify_pending.lock().unwrap().0
	}
}

macro_rules! define_callback { ($($bounds: path),*) => {
/// A callback which is called when a [`Future`] completes.
///
/// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
/// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
/// instead.
///
/// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
/// futures when they receive a wake, rather than immediately executing them.
pub trait FutureCallback : $($bounds +)* {
	/// The method which is called.
	fn call(&self);
}

impl<F: Fn() $(+ $bounds)*> FutureCallback for F {
	fn call(&self) { (self)(); }
}
} }

#[cfg(feature = "std")]
define_callback!(Send);
#[cfg(not(feature = "std"))]
define_callback!();

pub(crate) struct FutureState {
	// When we're tracking whether a callback counts as having woken the user's code, we check the
	// first bool - set to false if we're just calling a Waker, and true if we're calling an actual
	// user-provided function.
	callbacks: Vec<(bool, Box<dyn FutureCallback>)>,
	callbacks_with_state: Vec<(bool, Box<dyn Fn(&Arc<Mutex<FutureState>>) -> () + Send>)>,
	complete: bool,
	callbacks_made: bool,
}

fn complete_future(this: &Arc<Mutex<FutureState>>) -> bool {
	let mut state_lock = this.lock().unwrap();
	let state = &mut *state_lock;
	for (counts_as_call, callback) in state.callbacks.drain(..) {
		callback.call();
		state.callbacks_made |= counts_as_call;
	}
	for (counts_as_call, callback) in state.callbacks_with_state.drain(..) {
		(callback)(this);
		state.callbacks_made |= counts_as_call;
	}
	state.complete = true;
	state.callbacks_made
}

/// A simple future which can complete once, and calls some callback(s) when it does so.
///
/// Clones can be made and all futures cloned from the same source will complete at the same time.
#[derive(Clone)]
pub struct Future {
	state: Arc<Mutex<FutureState>>,
}

impl Future {
	/// Registers a callback to be called upon completion of this future. If the future has already
	/// completed, the callback will be called immediately.
	///
	/// This is not exported to bindings users, use the bindings-only `register_callback_fn` instead
	pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
		let mut state = self.state.lock().unwrap();
		if state.complete {
			state.callbacks_made = true;
			mem::drop(state);
			callback.call();
		} else {
			state.callbacks.push((true, callback));
		}
	}

	// C bindings don't (currently) know how to map `Box<dyn Trait>`, and while it could add the
	// following wrapper, doing it in the bindings is currently much more work than simply doing it
	// here.
	/// Registers a callback to be called upon completion of this future. If the future has already
	/// completed, the callback will be called immediately.
	#[cfg(c_bindings)]
	pub fn register_callback_fn<F: 'static + FutureCallback>(&self, callback: F) {
		self.register_callback(Box::new(callback));
	}

	/// Waits until this [`Future`] completes.
	#[cfg(feature = "std")]
	pub fn wait(self) {
		Sleeper::from_single_future(self).wait();
	}

	/// Waits until this [`Future`] completes or the given amount of time has elapsed.
	///
	/// Returns true if the [`Future`] completed, false if the time elapsed.
	#[cfg(feature = "std")]
	pub fn wait_timeout(self, max_wait: Duration) -> bool {
		Sleeper::from_single_future(self).wait_timeout(max_wait)
	}

	#[cfg(test)]
	pub fn poll_is_complete(&self) -> bool {
		let mut state = self.state.lock().unwrap();
		if state.complete {
			state.callbacks_made = true;
			true
		} else { false }
	}
}

use core::task::Waker;
struct StdWaker(pub Waker);
impl FutureCallback for StdWaker {
	fn call(&self) { self.0.wake_by_ref() }
}

/// This is not exported to bindings users as Rust Futures aren't usable in language bindings.
impl<'a> StdFuture for Future {
	type Output = ();

	fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
		let mut state = self.state.lock().unwrap();
		if state.complete {
			state.callbacks_made = true;
			Poll::Ready(())
		} else {
			let waker = cx.waker().clone();
			state.callbacks.push((false, Box::new(StdWaker(waker))));
			Poll::Pending
		}
	}
}

/// A struct which can be used to select across many [`Future`]s at once without relying on a full
/// async context.
#[cfg(feature = "std")]
pub struct Sleeper {
	notifiers: Vec<Arc<Mutex<FutureState>>>,
}

#[cfg(feature = "std")]
impl Sleeper {
	/// Constructs a new sleeper from one future, allowing blocking on it.
	pub fn from_single_future(future: Future) -> Self {
		Self { notifiers: vec![future.state] }
	}
	/// Constructs a new sleeper from two futures, allowing blocking on both at once.
	// Note that this is the common case - a ChannelManager and ChainMonitor.
	pub fn from_two_futures(fut_a: Future, fut_b: Future) -> Self {
		Self { notifiers: vec![fut_a.state, fut_b.state] }
	}
	/// Constructs a new sleeper on many futures, allowing blocking on all at once.
	pub fn new(futures: Vec<Future>) -> Self {
		Self { notifiers: futures.into_iter().map(|f| f.state).collect() }
	}
	/// Prepares to go into a wait loop body, creating a condition variable which we can block on
	/// and an `Arc<Mutex<Option<_>>>` which gets set to the waking `Future`'s state prior to the
	/// condition variable being woken.
	fn setup_wait(&self) -> (Arc<Condvar>, Arc<Mutex<Option<Arc<Mutex<FutureState>>>>>) {
		let cv = Arc::new(Condvar::new());
		let notified_fut_mtx = Arc::new(Mutex::new(None));
		{
			for notifier_mtx in self.notifiers.iter() {
				let cv_ref = Arc::clone(&cv);
				let notified_fut_ref = Arc::clone(&notified_fut_mtx);
				let mut notifier = notifier_mtx.lock().unwrap();
				if notifier.complete {
					*notified_fut_mtx.lock().unwrap() = Some(Arc::clone(&notifier_mtx));
					break;
				}
				notifier.callbacks_with_state.push((false, Box::new(move |notifier_ref| {
					*notified_fut_ref.lock().unwrap() = Some(Arc::clone(notifier_ref));
					cv_ref.notify_all();
				})));
			}
		}
		(cv, notified_fut_mtx)
	}

	/// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed.
	pub fn wait(&self) {
		let (cv, notified_fut_mtx) = self.setup_wait();
		let notified_fut = cv.wait_while(notified_fut_mtx.lock().unwrap(), |fut_opt| fut_opt.is_none())
			.unwrap().take().expect("CV wait shouldn't have returned until the notifying future was set");
		notified_fut.lock().unwrap().callbacks_made = true;
	}

	/// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed or the
	/// given amount of time has elapsed. Returns true if a [`Future`] completed, false if the time
	/// elapsed.
	pub fn wait_timeout(&self, max_wait: Duration) -> bool {
		let (cv, notified_fut_mtx) = self.setup_wait();
		let notified_fut =
			match cv.wait_timeout_while(notified_fut_mtx.lock().unwrap(), max_wait, |fut_opt| fut_opt.is_none()) {
				Ok((_, e)) if e.timed_out() => return false,
				Ok((mut notified_fut, _)) =>
					notified_fut.take().expect("CV wait shouldn't have returned until the notifying future was set"),
				Err(_) => panic!("Previous panic while a lock was held led to a lock panic"),
			};
		notified_fut.lock().unwrap().callbacks_made = true;
		true
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use core::sync::atomic::{AtomicBool, Ordering};
	use core::future::Future as FutureTrait;
	use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};

	#[test]
	fn notifier_pre_notified_future() {
		// Previously, if we generated a future after a `Notifier` had been notified, the future
		// would never complete. This tests this behavior, ensuring the future instead completes
		// immediately.
		let notifier = Notifier::new();
		notifier.notify();

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(callback.load(Ordering::SeqCst));
	}

	#[test]
	fn notifier_future_completes_wake() {
		// Previously, if we were only using the `Future` interface to learn when a `Notifier` has
		// been notified, we'd never mark the notifier as not-awaiting-notify. This caused the
		// `lightning-background-processor` to persist in a tight loop.
		let notifier = Notifier::new();

		// First check the simple case, ensuring if we get notified a new future isn't woken until
		// a second `notify`.
		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(!callback.load(Ordering::SeqCst));

		notifier.notify();
		assert!(callback.load(Ordering::SeqCst));

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(!callback.load(Ordering::SeqCst));

		notifier.notify();
		assert!(callback.load(Ordering::SeqCst));

		// Then check the case where the future is fetched before the notification, but a callback
		// is only registered after the `notify`, ensuring that it is still sufficient to ensure we
		// don't get an instant-wake when we get a new future.
		let future = notifier.get_future();
		notifier.notify();

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(callback.load(Ordering::SeqCst));

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(!callback.load(Ordering::SeqCst));
	}

	#[test]
	fn new_future_wipes_notify_bit() {
		// Previously, if we were only using the `Future` interface to learn when a `Notifier` has
		// been notified, we'd never mark the notifier as not-awaiting-notify if a `Future` is
		// fetched after the notify bit has been set.
		let notifier = Notifier::new();
		notifier.notify();

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(callback.load(Ordering::SeqCst));

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(!callback.load(Ordering::SeqCst));

		notifier.notify();
		assert!(callback.load(Ordering::SeqCst));
	}

	#[cfg(feature = "std")]
	#[test]
	fn test_wait_timeout() {
		use crate::sync::Arc;
		use std::thread;

		let persistence_notifier = Arc::new(Notifier::new());
		let thread_notifier = Arc::clone(&persistence_notifier);

		let exit_thread = Arc::new(AtomicBool::new(false));
		let exit_thread_clone = exit_thread.clone();
		thread::spawn(move || {
			loop {
				thread_notifier.notify();
				if exit_thread_clone.load(Ordering::SeqCst) {
					break
				}
			}
		});

		// Check that we can block indefinitely until updates are available.
		let _ = persistence_notifier.get_future().wait();

		// Check that the Notifier will return after the given duration if updates are
		// available.
		loop {
			if persistence_notifier.get_future().wait_timeout(Duration::from_millis(100)) {
				break
			}
		}

		exit_thread.store(true, Ordering::SeqCst);

		// Check that the Notifier will return after the given duration even if no updates
		// are available.
		loop {
			if !persistence_notifier.get_future().wait_timeout(Duration::from_millis(100)) {
				break
			}
		}
	}

	#[cfg(feature = "std")]
	#[test]
	fn test_state_drops() {
		// Previously, there was a leak if a `Notifier` was `drop`ed without ever being notified
		// but after having been slept-on. This tests for that leak.
		use crate::sync::Arc;
		use std::thread;

		let notifier_a = Arc::new(Notifier::new());
		let notifier_b = Arc::new(Notifier::new());

		let thread_notifier_a = Arc::clone(&notifier_a);

		let future_a = notifier_a.get_future();
		let future_state_a = Arc::downgrade(&future_a.state);

		let future_b = notifier_b.get_future();
		let future_state_b = Arc::downgrade(&future_b.state);

		let join_handle = thread::spawn(move || {
			// Let the other thread get to the wait point, then notify it.
			std::thread::sleep(Duration::from_millis(50));
			thread_notifier_a.notify();
		});

		// Wait on the other thread to finish its sleep, note that the leak only happened if we
		// actually have to sleep here, not if we immediately return.
		Sleeper::from_two_futures(future_a, future_b).wait();

		join_handle.join().unwrap();

		// then drop the notifiers and make sure the future states are gone.
		mem::drop(notifier_a);
		mem::drop(notifier_b);

		assert!(future_state_a.upgrade().is_none() && future_state_b.upgrade().is_none());
	}

	#[test]
	fn test_future_callbacks() {
		let future = Future {
			state: Arc::new(Mutex::new(FutureState {
				callbacks: Vec::new(),
				callbacks_with_state: Vec::new(),
				complete: false,
				callbacks_made: false,
			}))
		};
		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));

		assert!(!callback.load(Ordering::SeqCst));
		complete_future(&future.state);
		assert!(callback.load(Ordering::SeqCst));
		complete_future(&future.state);
	}

	#[test]
	fn test_pre_completed_future_callbacks() {
		let future = Future {
			state: Arc::new(Mutex::new(FutureState {
				callbacks: Vec::new(),
				callbacks_with_state: Vec::new(),
				complete: false,
				callbacks_made: false,
			}))
		};
		complete_future(&future.state);

		let callback = Arc::new(AtomicBool::new(false));
		let callback_ref = Arc::clone(&callback);
		future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));

		assert!(callback.load(Ordering::SeqCst));
		assert!(future.state.lock().unwrap().callbacks.is_empty());
	}

	// Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
	// totally possible to construct from a trait implementation (though somewhat less effecient
	// compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
	// waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
	const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
	unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
	unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; let _freed = Box::from_raw(p); }
	unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
	unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
		let p = ptr as *const Arc<AtomicBool>;
		RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
	}

	fn create_waker() -> (Arc<AtomicBool>, Waker) {
		let a = Arc::new(AtomicBool::new(false));
		let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
		(a, waker)
	}

	#[test]
	fn test_future() {
		let mut future = Future {
			state: Arc::new(Mutex::new(FutureState {
				callbacks: Vec::new(),
				callbacks_with_state: Vec::new(),
				complete: false,
				callbacks_made: false,
			}))
		};
		let mut second_future = Future { state: Arc::clone(&future.state) };

		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
		assert!(!woken.load(Ordering::SeqCst));

		let (second_woken, second_waker) = create_waker();
		assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
		assert!(!second_woken.load(Ordering::SeqCst));

		complete_future(&future.state);
		assert!(woken.load(Ordering::SeqCst));
		assert!(second_woken.load(Ordering::SeqCst));
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
		assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));
	}

	#[test]
	#[cfg(feature = "std")]
	fn test_dropped_future_doesnt_count() {
		// Tests that if a Future gets drop'd before it is poll()ed `Ready` it doesn't count as
		// having been woken, leaving the notify-required flag set.
		let notifier = Notifier::new();
		notifier.notify();

		// If we get a future and don't touch it we're definitely still notify-required.
		notifier.get_future();
		assert!(notifier.get_future().wait_timeout(Duration::from_millis(1)));
		assert!(!notifier.get_future().wait_timeout(Duration::from_millis(1)));

		// Even if we poll'd once but didn't observe a `Ready`, we should be notify-required.
		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);

		notifier.notify();
		assert!(woken.load(Ordering::SeqCst));
		assert!(notifier.get_future().wait_timeout(Duration::from_millis(1)));

		// However, once we do poll `Ready` it should wipe the notify-required flag.
		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);

		notifier.notify();
		assert!(woken.load(Ordering::SeqCst));
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
		assert!(!notifier.get_future().wait_timeout(Duration::from_millis(1)));
	}

	#[test]
	fn test_poll_post_notify_completes() {
		// Tests that if we have a future state that has completed, and we haven't yet requested a
		// new future, if we get a notify prior to requesting that second future it is generated
		// pre-completed.
		let notifier = Notifier::new();

		notifier.notify();
		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
		assert!(!woken.load(Ordering::SeqCst));

		notifier.notify();
		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
		assert!(!woken.load(Ordering::SeqCst));

		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
		assert!(!woken.load(Ordering::SeqCst));

		notifier.notify();
		assert!(woken.load(Ordering::SeqCst));
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
	}

	#[test]
	fn test_poll_post_notify_completes_initial_notified() {
		// Identical to the previous test, but the first future completes via a wake rather than an
		// immediate `Poll::Ready`.
		let notifier = Notifier::new();

		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);

		notifier.notify();
		assert!(woken.load(Ordering::SeqCst));
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));

		notifier.notify();
		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
		assert!(!woken.load(Ordering::SeqCst));

		let mut future = notifier.get_future();
		let (woken, waker) = create_waker();
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
		assert!(!woken.load(Ordering::SeqCst));

		notifier.notify();
		assert!(woken.load(Ordering::SeqCst));
		assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
	}

	#[test]
	#[cfg(feature = "std")]
	fn test_multi_future_sleep() {
		// Tests the `Sleeper` with multiple futures.
		let notifier_a = Notifier::new();
		let notifier_b = Notifier::new();

		// Set both notifiers as woken without sleeping yet.
		notifier_a.notify();
		notifier_b.notify();
		Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();

		// One future has woken us up, but the other should still have a pending notification.
		Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();

		// However once we've slept twice, we should no longer have any pending notifications
		assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
			.wait_timeout(Duration::from_millis(10)));

		// Test ordering somewhat more.
		notifier_a.notify();
		Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
	}

	#[test]
	#[cfg(feature = "std")]
	fn sleeper_with_pending_callbacks() {
		// This is similar to the above `test_multi_future_sleep` test, but in addition registers
		// "normal" callbacks which will cause the futures to assume notification has occurred,
		// rather than waiting for a woken sleeper.
		let notifier_a = Notifier::new();
		let notifier_b = Notifier::new();

		// Set both notifiers as woken without sleeping yet.
		notifier_a.notify();
		notifier_b.notify();

		// After sleeping one future (not guaranteed which one, however) will have its notification
		// bit cleared.
		Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();

		// By registering a callback on the futures for both notifiers, one will complete
		// immediately, but one will remain tied to the notifier, and will complete once the
		// notifier is next woken, which will be considered the completion of the notification.
		let callback_a = Arc::new(AtomicBool::new(false));
		let callback_b = Arc::new(AtomicBool::new(false));
		let callback_a_ref = Arc::clone(&callback_a);
		let callback_b_ref = Arc::clone(&callback_b);
		notifier_a.get_future().register_callback(Box::new(move || assert!(!callback_a_ref.fetch_or(true, Ordering::SeqCst))));
		notifier_b.get_future().register_callback(Box::new(move || assert!(!callback_b_ref.fetch_or(true, Ordering::SeqCst))));
		assert!(callback_a.load(Ordering::SeqCst) ^ callback_b.load(Ordering::SeqCst));

		// If we now notify both notifiers again, the other callback will fire, completing the
		// notification, and we'll be back to one pending notification.
		notifier_a.notify();
		notifier_b.notify();

		assert!(callback_a.load(Ordering::SeqCst) && callback_b.load(Ordering::SeqCst));
		Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
		assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
			.wait_timeout(Duration::from_millis(10)));
	}
}