1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// A concurrent linked hash map, fast and lock-free on iterate

use crate::map::{Map, ObjectMap};
use crate::spin::SpinLock;
use std::ops::Deref;
use std::sync::atomic::Ordering::{AcqRel, Acquire, Release};
use std::sync::atomic::{fence, AtomicUsize};
use std::sync::Arc;

const NONE_KEY: usize = !0 >> 1;

pub type NodeRef<T> = Arc<Node<T>>;

pub struct Node<T> {
    // Prev and next node keys
    lock: SpinLock<()>,
    prev: AtomicUsize,
    next: AtomicUsize,
    obj: T,
}

pub struct LinkedObjectMap<T> {
    map: ObjectMap<NodeRef<T>>,
    head: AtomicUsize,
    tail: AtomicUsize,
}

impl<T> LinkedObjectMap<T> {
    pub fn with_capacity(cap: usize) -> Self {
        LinkedObjectMap {
            map: ObjectMap::with_capacity(cap),
            head: AtomicUsize::new(NONE_KEY),
            tail: AtomicUsize::new(NONE_KEY),
        }
    }

    pub fn insert_front(&self, key: &usize, value: T) {
        debug_assert_ne!(*key, NONE_KEY);
        let backoff = crossbeam_utils::Backoff::new();
        let new_front = Node::new(value, NONE_KEY, NONE_KEY);
        if let Some(_) = self.map.insert(key, new_front.clone()) {
            return;
        }
        let _new_guard = new_front.lock.lock();
        loop {
            let front = self.head.load(Acquire);
            let front_node = self.map.get(&front);
            let _front_guard = front_node.as_ref().map(|n| n.lock.lock());
            if let Some(ref front_node) = front_node {
                if front_node.get_prev() != NONE_KEY {
                    backoff.spin();
                    continue;
                }
            } else if front != NONE_KEY {
                // Inconsistent with map, will spin wait
                backoff.spin();
                continue;
            }
            new_front.set_next(front);
            if self.head.compare_and_swap(front, *key, AcqRel) == front {
                if let Some(ref front_node) = front_node {
                    front_node.prev.store(*key, Release);
                } else {
                    debug_assert_eq!(front, NONE_KEY);
                    self.tail.compare_and_swap(NONE_KEY, *key, AcqRel);
                }
                break;
            } else {
                backoff.spin();
            }
        }
    }

    pub fn insert_back(&self, key: &usize, value: T) {
        debug_assert_ne!(*key, NONE_KEY);
        let backoff = crossbeam_utils::Backoff::new();
        let new_back = Node::new(value, NONE_KEY, NONE_KEY);
        let _new_guard = new_back.lock.lock();
        if let Some(_) = self.map.insert(key, new_back.clone()) {
            return;
        }
        loop {
            let back = self.tail.load(Acquire);
            let back_node = self.map.get(&back);
            let _back_guard = back_node.as_ref().map(|n| n.lock.lock());
            if let Some(ref back_node) = back_node {
                if back_node.get_next() != NONE_KEY {
                    backoff.spin();
                    continue;
                }
            } else if back != NONE_KEY {
                backoff.spin();
                continue;
            }
            new_back.set_prev(back);
            if self.tail.compare_and_swap(back, *key, AcqRel) == back {
                if let Some(ref back_node) = back_node {
                    back_node.next.store(*key, Release);
                } else {
                    debug_assert_eq!(back, NONE_KEY);
                    self.head.compare_and_swap(NONE_KEY, *key, AcqRel);
                }
                break;
            } else {
                backoff.spin();
            }
        }
    }

    pub fn get(&self, key: &usize) -> Option<NodeRef<T>> {
        self.map.get(key)
    }

    pub fn remove(&self, key: &usize) -> Option<NodeRef<T>> {
        let val = self.map.get(key);
        if let Some(val_node) = val {
            self.remove_node(*key, val_node);
            return self.map.remove(key);
        } else {
            return val;
        }
    }

    fn remove_node(&self, key: usize, val_node: NodeRef<T>) {
        let backoff = crossbeam_utils::Backoff::new();
        loop {
            let prev = val_node.get_prev();
            let next = val_node.get_next();
            let prev_node = self.map.get(&prev);
            let next_node = self.map.get(&next);
            if (prev != NONE_KEY && prev_node.is_none())
                || (next != NONE_KEY && next_node.is_none())
            {
                backoff.spin();
                continue;
            }
            // Lock 3 nodes, from left to right to avoid dead lock
            let _prev_guard = prev_node.as_ref().map(|n| n.lock.lock());
            let _self_guard = val_node.lock.lock();
            let _next_guard = next_node.as_ref().map(|n| n.lock.lock());
            // Validate 3 nodes, retry on failure
            if {
                prev_node
                    .as_ref()
                    .map(|n| n.get_next() != key)
                    .unwrap_or(false)
                    | (val_node.get_prev() != prev)
                    | (val_node.get_next() != next)
                    | next_node
                        .as_ref()
                        .map(|n| n.get_prev() != key)
                        .unwrap_or(false)
            } {
                backoff.spin();
                continue;
            }
            // Bacause all the nodes we are about to modify are locked, we shall use store
            // instead of CAS
            prev_node.as_ref().map(|n| n.set_next(next));
            next_node.as_ref().map(|n| n.set_prev(prev));
            if prev_node.is_none() {
                debug_assert_eq!(self.head.load(Acquire), key);
                self.head.store(next, Release);
            }
            if next_node.is_none() {
                debug_assert_eq!(self.tail.load(Acquire), key);
                self.tail.store(prev, Release);
            }
            return;
        }
    }

    pub fn len(&self) -> usize {
        self.map.len()
    }

    pub fn contains_key(&self, key: &usize) -> bool {
        self.map.contains_key(key)
    }

    pub fn all_pairs(&self) -> Vec<(usize, NodeRef<T>)> {
        let mut res = vec![];
        let mut node_key = self.head.load(Acquire);
        loop {
            if let Some(node) = self.map.get(&node_key) {
                let new_node_key = node.get_next();
                res.push((node_key, node));
                node_key = new_node_key;
            } else if node_key == NONE_KEY {
                break;
            } else {
                unreachable!();
            }
        }
        res
    }

    pub fn all_keys(&self) -> Vec<usize> {
        let mut res = vec![];
        let mut node_key = self.head.load(Acquire);
        loop {
            if let Some(node) = self.map.get(&node_key) {
                res.push(node_key);
                node_key = node.get_next();
            } else if node_key == NONE_KEY {
                break;
            } else {
                unreachable!();
            }
        }
        res
    }

    pub fn all_values(&self) -> Vec<NodeRef<T>> {
        let mut res = vec![];
        let mut node_key = self.head.load(Acquire);
        loop {
            if let Some(node) = self.map.get(&node_key) {
                node_key = node.get_next();
                res.push(node);
            } else if node_key == NONE_KEY {
                break;
            } else {
                unreachable!();
            }
        }
        res
    }
}

impl<T> Node<T> {
    pub fn new(obj: T, prev: usize, next: usize) -> NodeRef<T> {
        Arc::new(Self {
            obj,
            lock: SpinLock::new(()),
            prev: AtomicUsize::new(prev),
            next: AtomicUsize::new(next),
        })
    }

    fn get_next(&self) -> usize {
        self.next.load(Acquire)
    }

    fn get_prev(&self) -> usize {
        self.prev.load(Acquire)
    }

    fn set_next(&self, new: usize) {
        self.next.store(new, Release)
    }

    fn set_prev(&self, new: usize) {
        self.prev.store(new, Release)
    }
}

impl<T> Deref for Node<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.obj
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::thread;

    #[test]
    pub fn linked_map_serial() {
        let map = LinkedObjectMap::with_capacity(16);
        for i in 0..1024 {
            map.insert_front(&i, i);
        }
        for i in 1024..2048 {
            map.insert_back(&i, i);
        }
    }

    #[test]
    pub fn linked_map_insertions() {
        let _ = env_logger::try_init();
        let linked_map = Arc::new(LinkedObjectMap::with_capacity(16));
        let num_threads = 16;
        let mut threads = vec![];
        for i in 0..num_threads {
            let map = linked_map.clone();
            threads.push(thread::spawn(move || {
                for j in 0..999 {
                    let num = i * 1000 + j;
                    debug!("Insert {}", num);
                    if j % 2 == 1 {
                        map.insert_back(&num, num);
                    } else {
                        map.insert_front(&num, num);
                    }
                    map.all_keys();
                    map.all_values();
                    map.all_pairs();
                }
            }));
        }
        info!("Waiting for threads to finish");
        for t in threads {
            t.join().unwrap();
        }
    }
}