1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use crate::{
    errors::CompressedPdaError,
    invoke_cpi::verify_signer::check_program_owner_state_merkle_tree,
    sdk::accounts::{InvokeAccounts, SignerAccounts},
    InstructionDataInvoke,
};
use anchor_lang::solana_program::program::invoke_signed;
use anchor_lang::{prelude::*, solana_program::pubkey::Pubkey, Bumps};
use light_hasher::Poseidon;
use light_heap::{bench_sbf_end, bench_sbf_start};
use light_macros::heap_neutral;
use light_utils::hash_to_bn254_field_size_be;

#[allow(clippy::too_many_arguments)]
#[heap_neutral]
pub fn insert_output_compressed_accounts_into_state_merkle_tree<
    'a,
    'b,
    'c: 'info,
    'info,
    const ITER_SIZE: usize,
    A: InvokeAccounts<'info> + SignerAccounts<'info> + Bumps,
>(
    inputs: &'a InstructionDataInvoke,
    ctx: &'a Context<'a, 'b, 'c, 'info, A>,
    output_compressed_account_indices: &'a mut [u32],
    output_compressed_account_hashes: &'a mut [[u8; 32]],
    addresses: &'a mut Vec<Option<[u8; 32]>>,
    global_iter: &'a mut usize,
    invoking_program: &Option<Pubkey>,
    hashed_pubkeys: &'a mut Vec<(Pubkey, [u8; 32])>,
) -> Result<()> {
    bench_sbf_start!("cpda_append_data_init");
    let mut account_infos = vec![
        ctx.accounts.get_fee_payer().to_account_info(),
        ctx.accounts
            .get_account_compression_authority()
            .to_account_info(),
        ctx.accounts.get_registered_program_pda().to_account_info(),
        ctx.accounts.get_noop_program().to_account_info(),
        ctx.accounts.get_system_program().to_account_info(),
    ];
    let mut accounts = vec![
        AccountMeta {
            pubkey: account_infos[0].key(),
            is_signer: true,
            is_writable: true,
        },
        AccountMeta {
            pubkey: account_infos[1].key(),
            is_signer: true,
            is_writable: false,
        },
        AccountMeta {
            pubkey: account_infos[2].key(),
            is_signer: false,
            is_writable: false,
        },
        AccountMeta {
            pubkey: account_infos[3].key(),
            is_signer: false,
            is_writable: false,
        },
        AccountMeta::new_readonly(account_infos[4].key(), false),
    ];

    // let mut out_merkle_trees_account_infos = Vec::<AccountInfo>::new();
    // let mut merkle_tree_indices = HashMap::<Pubkey, usize>::new();
    // idea, enforce that Merkle tree compressed accounts are ordered,
    // -> Merkle tree index can only be equal or higher than the previous one.
    // if the index is higher add the account info to out_merkle_trees_account_infos.
    let initial_index = *global_iter;
    let mut current_index: u8 = 0;
    let end = if *global_iter + ITER_SIZE > inputs.output_compressed_accounts.len() {
        inputs.output_compressed_accounts.len()
    } else {
        *global_iter + ITER_SIZE
    };
    let num_leaves = end - initial_index;
    let mut num_leaves_in_tree: u32 = 0;
    let mut mt_next_index = 0;
    let mut instruction_data = Vec::<u8>::with_capacity(12 + 32 * num_leaves);
    let mut hashed_merkle_tree = [0u8; 32];
    // anchor instruction signature
    instruction_data.extend_from_slice(&[199, 144, 10, 82, 247, 142, 143, 7]);
    // leaves vector length (for borsh compat)
    instruction_data.extend_from_slice(&(num_leaves as u32).to_le_bytes());
    if inputs.output_state_merkle_tree_account_indices[initial_index] == 0 {
        let account_info = ctx.remaining_accounts
            [inputs.output_state_merkle_tree_account_indices[current_index as usize] as usize]
            .to_account_info();
        mt_next_index = check_program_owner_state_merkle_tree(
            &ctx.remaining_accounts[current_index as usize],
            invoking_program,
        )?;
        hashed_merkle_tree = match hashed_pubkeys.iter().find(|x| x.0 == account_info.key()) {
            Some(hashed_merkle_tree) => hashed_merkle_tree.1,
            None => {
                // we do not insert here because Merkle trees are ordered and will not repeat.
                hash_to_bn254_field_size_be(&account_info.key().to_bytes())
                    .unwrap()
                    .0
            }
        };
        accounts.push(AccountMeta {
            pubkey: account_info.key(),
            is_signer: false,
            is_writable: true,
        });
        account_infos.push(account_info);
    }
    bench_sbf_end!("cpda_append_data_init");
    bench_sbf_start!("cpda_append_rest");

    for mt_index in inputs.output_state_merkle_tree_account_indices[initial_index..end].iter() {
        let j = *global_iter;
        *global_iter += 1;

        // if mt index == current index Merkle tree account info has already been added.
        // if mt index > current index, Merkle tree account info is new, add it.
        // else Merkle tree index is out of order throw error.
        #[allow(clippy::comparison_chain)]
        if *mt_index == current_index {
            // do nothing, but is the most common case.
        } else if *mt_index > current_index {
            current_index = *mt_index;
            mt_next_index = check_program_owner_state_merkle_tree(
                &ctx.remaining_accounts[*mt_index as usize],
                invoking_program,
            )?;
            let account_info = ctx.remaining_accounts[*mt_index as usize].to_account_info();
            accounts.push(AccountMeta {
                pubkey: account_info.key(),
                is_signer: false,
                is_writable: true,
            });
            hashed_merkle_tree = match hashed_pubkeys.iter().find(|x| x.0 == account_info.key()) {
                Some(hashed_merkle_tree) => hashed_merkle_tree.1,
                None => {
                    // TODO: make sure there is never more memory allocated than provided at first.
                    // we do not insert here because Merkle trees are ordered and will not repeat.
                    hash_to_bn254_field_size_be(&account_info.key().to_bytes())
                        .unwrap()
                        .0
                }
            };
            account_infos.push(account_info);
            num_leaves_in_tree = 0;
        } else {
            // TODO: add failing test
            msg!("Invalid Merkle tree index: {} current index {} (Merkle tree indices need to be in ascendin order.", *mt_index, current_index);
            return err!(CompressedPdaError::InvalidMerkleTreeIndex);
        }

        // Address has to be created or a compressed account with this address has to be provided as transaction input.
        if let Some(address) = inputs.output_compressed_accounts[j].address {
            if let Some(position) = addresses
                .iter()
                .filter(|x| x.is_some())
                .position(|&x| x.unwrap() == address)
            {
                addresses.remove(position);
            } else {
                msg!("Address {:?}, has not been created and no compressed account with this address was provided as transaction input", address);
                msg!("Remaining addresses: {:?}", addresses);
                return Err(CompressedPdaError::InvalidAddress.into());
            }
        }

        output_compressed_account_indices[j] = mt_next_index + num_leaves_in_tree;
        num_leaves_in_tree += 1;
        let hashed_owner = match hashed_pubkeys
            .iter()
            .find(|x| x.0 == inputs.output_compressed_accounts[j].owner)
        {
            Some(hashed_owner) => hashed_owner.1,
            None => {
                let hashed_owner = hash_to_bn254_field_size_be(
                    &inputs.output_compressed_accounts[j].owner.to_bytes(),
                )
                .unwrap()
                .0;
                hashed_pubkeys.push((inputs.output_compressed_accounts[j].owner, hashed_owner));
                hashed_owner
            }
        };
        // Compute output compressed account hash.
        output_compressed_account_hashes[j] = inputs.output_compressed_accounts[j]
            .hash_with_hashed_values::<Poseidon>(
                &hashed_owner,
                &hashed_merkle_tree,
                &output_compressed_account_indices[j],
            )?;
        instruction_data.extend_from_slice(&[current_index]);
        instruction_data.extend_from_slice(&output_compressed_account_hashes[j]);
    }

    let bump = &[254];
    let seeds = &[&[b"cpi_authority".as_slice(), bump][..]];
    let instruction = anchor_lang::solana_program::instruction::Instruction {
        program_id: account_compression::ID,
        accounts,
        data: instruction_data,
    };
    invoke_signed(&instruction, account_infos.as_slice(), seeds)?;
    bench_sbf_end!("cpda_append_rest");

    Ok(())
}

#[test]
fn test_instruction_data_borsh_compat() {
    let mut vec = Vec::<u8>::new();
    vec.extend_from_slice(&2u32.to_le_bytes());
    vec.push(1);
    vec.extend_from_slice(&[2u8; 32]);
    vec.push(3);
    vec.extend_from_slice(&[4u8; 32]);
    let refe = vec![(1, [2u8; 32]), (3, [4u8; 32])];
    let mut serialized = Vec::new();
    Vec::<(u8, [u8; 32])>::serialize(&refe, &mut serialized).unwrap();
    assert_eq!(serialized, vec);
    let res = Vec::<(u8, [u8; 32])>::deserialize(&mut vec.as_slice()).unwrap();
    assert_eq!(res, vec![(1, [2u8; 32]), (3, [4u8; 32])]);
}