1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use std::marker::PhantomData;

use light_bounded_vec::{BoundedVec, BoundedVecError};
use light_hasher::{errors::HasherError, Hasher};
use thiserror::Error;

#[derive(Debug, Error)]
pub enum ReferenceMerkleTreeError {
    #[error("Leaf {0} does not exist")]
    LeafDoesNotExist(usize),
    #[error("Hasher error: {0}")]
    Hasher(#[from] HasherError),
    #[error("Invalid proof length provided: {0} required {1}")]
    InvalidProofLength(usize, usize),
}

#[derive(Debug, Clone)]
pub struct MerkleTree<H>
where
    H: Hasher,
{
    pub height: usize,
    pub capacity: usize,
    pub canopy_depth: usize,
    pub layers: Vec<Vec<[u8; 32]>>,
    pub roots: Vec<[u8; 32]>,
    pub rightmost_index: usize,
    pub sequence_number: usize,

    _hasher: PhantomData<H>,
}

impl<H> MerkleTree<H>
where
    H: Hasher,
{
    pub fn new(height: usize, canopy_depth: usize) -> Self {
        Self {
            height,
            capacity: 1 << height,
            canopy_depth,
            layers: vec![Vec::new(); height],
            roots: vec![H::zero_bytes()[height]],
            rightmost_index: 0,
            sequence_number: 0,

            _hasher: PhantomData,
        }
    }

    /// Number of nodes to include in canopy, based on `canopy_depth`.
    pub fn canopy_size(&self) -> usize {
        (1 << (self.canopy_depth + 1)) - 2
    }

    fn update_upper_layers(&mut self, mut i: usize) -> Result<(), HasherError> {
        for level in 1..self.height {
            i /= 2;

            let left_index = i * 2;
            let right_index = i * 2 + 1;

            let left_child = self.layers[level - 1]
                .get(left_index)
                .cloned()
                .unwrap_or(H::zero_bytes()[level - 1]);
            let right_child = self.layers[level - 1]
                .get(right_index)
                .cloned()
                .unwrap_or(H::zero_bytes()[level - 1]);

            let node = H::hashv(&[&left_child[..], &right_child[..]])?;
            if self.layers[level].len() > i {
                // A node already exists and we are overwriting it.
                self.layers[level][i] = node;
            } else {
                // A node didn't exist before.
                self.layers[level].push(node);
            }
        }

        let left_child = &self.layers[self.height - 1]
            .first()
            .cloned()
            .unwrap_or(H::zero_bytes()[self.height - 1]);
        let right_child = &self.layers[self.height - 1]
            .get(1)
            .cloned()
            .unwrap_or(H::zero_bytes()[self.height - 1]);
        let root = H::hashv(&[&left_child[..], &right_child[..]])?;

        self.roots.push(root);

        Ok(())
    }

    pub fn append(&mut self, leaf: &[u8; 32]) -> Result<(), HasherError> {
        self.layers[0].push(*leaf);

        let i = self.rightmost_index;
        self.rightmost_index += 1;

        self.update_upper_layers(i)?;

        self.sequence_number += 1;
        Ok(())
    }

    pub fn append_batch(&mut self, leaves: &[&[u8; 32]]) -> Result<(), HasherError> {
        for leaf in leaves {
            self.append(leaf)?;
        }
        Ok(())
    }

    pub fn update(
        &mut self,
        leaf: &[u8; 32],
        leaf_index: usize,
    ) -> Result<(), ReferenceMerkleTreeError> {
        *self.layers[0]
            .get_mut(leaf_index)
            .ok_or(ReferenceMerkleTreeError::LeafDoesNotExist(leaf_index))? = *leaf;

        self.update_upper_layers(leaf_index)?;

        self.sequence_number += 1;
        Ok(())
    }

    pub fn root(&self) -> [u8; 32] {
        // PANICS: We always initialize the Merkle tree with a
        // root (from zero bytes), so the following should never
        // panic.
        self.roots.last().cloned().unwrap()
    }

    pub fn get_path_of_leaf(
        &self,
        mut index: usize,
        full: bool,
    ) -> Result<BoundedVec<[u8; 32]>, BoundedVecError> {
        let mut path = BoundedVec::with_capacity(self.height);
        let limit = match full {
            true => self.height,
            false => self.height - self.canopy_depth,
        };

        for level in 0..limit {
            let node = self.layers[level]
                .get(index)
                .cloned()
                .unwrap_or(H::zero_bytes()[level]);
            path.push(node)?;

            index /= 2;
        }

        Ok(path)
    }

    pub fn get_proof_of_leaf(
        &self,
        mut index: usize,
        full: bool,
    ) -> Result<BoundedVec<[u8; 32]>, BoundedVecError> {
        let mut proof = BoundedVec::with_capacity(self.height);
        let limit = match full {
            true => self.height,
            false => self.height - self.canopy_depth,
        };

        for level in 0..limit {
            let is_left = index % 2 == 0;

            let sibling_index = if is_left { index + 1 } else { index - 1 };
            let node = self.layers[level]
                .get(sibling_index)
                .cloned()
                .unwrap_or(H::zero_bytes()[level]);
            proof.push(node)?;

            index /= 2;
        }

        Ok(proof)
    }

    pub fn get_canopy(&self) -> Result<BoundedVec<[u8; 32]>, BoundedVecError> {
        if self.canopy_depth == 0 {
            return Ok(BoundedVec::with_capacity(0));
        }
        let mut canopy = BoundedVec::with_capacity(self.canopy_size());

        let mut num_nodes_in_level = 2;
        for i in 0..self.canopy_depth {
            let level = self.height - 1 - i;
            for j in 0..num_nodes_in_level {
                let node = self.layers[level]
                    .get(j)
                    .cloned()
                    .unwrap_or(H::zero_bytes()[level]);
                canopy.push(node)?;
            }
            num_nodes_in_level *= 2;
        }

        Ok(canopy)
    }

    pub fn leaf(&self, leaf_index: usize) -> [u8; 32] {
        self.layers[0]
            .get(leaf_index)
            .cloned()
            .unwrap_or(H::zero_bytes()[0])
    }

    pub fn get_leaf_index(&self, leaf: &[u8; 32]) -> Option<usize> {
        self.layers[0].iter().position(|node| node == leaf)
    }

    pub fn leaves(&self) -> &[[u8; 32]] {
        self.layers[0].as_slice()
    }

    pub fn verify(
        &self,
        leaf: &[u8; 32],
        proof: &BoundedVec<[u8; 32]>,
        leaf_index: usize,
    ) -> Result<bool, ReferenceMerkleTreeError> {
        if leaf_index >= self.capacity {
            return Err(ReferenceMerkleTreeError::LeafDoesNotExist(leaf_index));
        }
        if proof.len() != self.height {
            return Err(ReferenceMerkleTreeError::InvalidProofLength(
                proof.len(),
                self.height,
            ));
        }

        let mut computed_hash = *leaf;
        let mut current_index = leaf_index;

        for sibling_hash in proof.iter() {
            let is_left = current_index % 2 == 0;
            let hashes = if is_left {
                [&computed_hash[..], &sibling_hash[..]]
            } else {
                [&sibling_hash[..], &computed_hash[..]]
            };

            computed_hash = H::hashv(&hashes)?;

            // Move to the parent index for the next iteration
            current_index /= 2;
        }

        // Compare the computed hash to the last known root
        Ok(computed_hash == self.root())
    }
}