1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
use std::{
marker::PhantomData,
mem,
ops::{Deref, DerefMut},
ptr::NonNull,
};
use crate::{HashSet, HashSetCell, HashSetError};
/// A `HashSet` wrapper which can be instantiated from Solana account bytes
/// without copying them.
#[derive(Debug)]
pub struct HashSetZeroCopy<'a> {
pub hash_set: mem::ManuallyDrop<HashSet>,
_marker: PhantomData<&'a ()>,
}
impl<'a> HashSetZeroCopy<'a> {
// TODO(vadorovsky): Add a non-mut method: `from_bytes_zero_copy`.
/// Casts a byte slice into `HashSet`.
///
/// # Purpose
///
/// This method is meant to be used mostly in Solana programs, where memory
/// constraints are tight and we want to make sure no data is copied.
///
/// # Safety
///
/// This is highly unsafe. Ensuring the alignment and that the slice
/// provides actual data of the hash set is the caller's responsibility.
///
/// Calling it in async context (or anyhwere where the underlying data can
/// be moved in the memory) is certainly going to cause undefined behavior.
pub unsafe fn from_bytes_zero_copy_mut(bytes: &'a mut [u8]) -> Result<Self, HashSetError> {
if bytes.len() < HashSet::non_dyn_fields_size() {
return Err(HashSetError::BufferSize(
HashSet::non_dyn_fields_size(),
bytes.len(),
));
}
let capacity_values = usize::from_ne_bytes(bytes[0..8].try_into().unwrap());
let sequence_threshold = usize::from_ne_bytes(bytes[8..16].try_into().unwrap());
let offset = HashSet::non_dyn_fields_size() + mem::size_of::<usize>();
let values_size = mem::size_of::<Option<HashSetCell>>() * capacity_values;
let expected_size = HashSet::non_dyn_fields_size() + values_size;
if bytes.len() < expected_size {
return Err(HashSetError::BufferSize(expected_size, bytes.len()));
}
let buckets =
NonNull::new(bytes.as_mut_ptr().add(offset) as *mut Option<HashSetCell>).unwrap();
Ok(Self {
hash_set: mem::ManuallyDrop::new(HashSet {
capacity: capacity_values,
sequence_threshold,
buckets,
}),
_marker: PhantomData,
})
}
/// Casts a byte slice into `HashSet` and then initializes it.
///
/// * `bytes` is casted into a reference of `HashSet` and used as
/// storage for the struct.
/// * `capacity_indices` indicates the size of the indices table. It should
/// already include a desired load factor and be greater than the expected
/// number of elements to avoid filling the set too early and avoid
/// creating clusters.
/// * `capacity_values` indicates the size of the values array. It should be
/// equal to the number of expected elements, without load factor.
/// * `sequence_threshold` indicates a difference of sequence numbers which
/// make elements of the has set expired. Expiration means that they can
/// be replaced during insertion of new elements with sequence numbers
/// higher by at least a threshold.
///
/// # Purpose
///
/// This method is meant to be used mostly in Solana programs to initialize
/// a new account which is supposed to store the hash set.
///
/// # Safety
///
/// This is highly unsafe. Ensuring the alignment and that the slice has
/// a correct size, which is able to fit the hash set, is the caller's
/// responsibility.
///
/// Calling it in async context (or anywhere where the underlying data can
/// be moved in memory) is certainly going to cause undefined behavior.
pub unsafe fn from_bytes_zero_copy_init(
bytes: &'a mut [u8],
capacity_values: usize,
sequence_threshold: usize,
) -> Result<Self, HashSetError> {
if bytes.len() < HashSet::non_dyn_fields_size() {
return Err(HashSetError::BufferSize(
HashSet::non_dyn_fields_size(),
bytes.len(),
));
}
bytes[0..8].copy_from_slice(&capacity_values.to_ne_bytes());
bytes[8..16].copy_from_slice(&sequence_threshold.to_ne_bytes());
bytes[16..24].copy_from_slice(&0_usize.to_ne_bytes());
let hash_set = Self::from_bytes_zero_copy_mut(bytes)?;
for i in 0..capacity_values {
std::ptr::write(hash_set.hash_set.buckets.as_ptr().add(i), None);
}
Ok(hash_set)
}
}
impl<'a> Drop for HashSetZeroCopy<'a> {
fn drop(&mut self) {
// SAFETY: Don't do anything here! Why?
//
// * Primitive fields of `HashSet` implement `Copy`, therefore `drop()`
// has no effect on them - Rust drops them when they go out of scope.
// * Don't drop the dynamic fields (`indices` and `values`). In
// `HashSetZeroCopy`, they are backed by buffers provided by the
// caller. These buffers are going to be eventually deallocated.
// Performing an another `drop()` here would result double `free()`
// which would result in aborting the program (either with `SIGABRT`
// or `SIGSEGV`).
}
}
impl<'a> Deref for HashSetZeroCopy<'a> {
type Target = HashSet;
fn deref(&self) -> &Self::Target {
&self.hash_set
}
}
impl<'a> DerefMut for HashSetZeroCopy<'a> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.hash_set
}
}
#[cfg(test)]
mod test {
use ark_bn254::Fr;
use ark_ff::UniformRand;
use num_bigint::BigUint;
use rand::{thread_rng, Rng};
use super::*;
#[test]
fn test_load_from_bytes() {
const VALUES: usize = 4800;
const SEQUENCE_THRESHOLD: usize = 2400;
// Create a buffer with random bytes.
let mut bytes = vec![0u8; HashSet::size_in_account(VALUES)];
thread_rng().fill(bytes.as_mut_slice());
// Create random nullifiers.
let mut rng = thread_rng();
let nullifiers: [BigUint; 2400] =
std::array::from_fn(|_| BigUint::from(Fr::rand(&mut rng)));
// Initialize a hash set on top of a byte slice.
{
let mut hs = unsafe {
HashSetZeroCopy::from_bytes_zero_copy_init(
bytes.as_mut_slice(),
VALUES,
SEQUENCE_THRESHOLD,
)
.unwrap()
};
// Ensure that the underlying data were properly initialized.
assert_eq!(hs.hash_set.capacity, VALUES);
assert_eq!(hs.hash_set.sequence_threshold, SEQUENCE_THRESHOLD);
for i in 0..VALUES {
assert!(unsafe { &*hs.hash_set.buckets.as_ptr().add(i) }.is_none());
}
for (seq, nullifier) in nullifiers.iter().enumerate() {
let index = hs.insert(&nullifier, seq).unwrap();
hs.mark_with_sequence_number(index, seq).unwrap();
}
}
// Read the hash set from buffers again.
{
let mut hs =
unsafe { HashSetZeroCopy::from_bytes_zero_copy_mut(bytes.as_mut_slice()).unwrap() };
for (seq, nullifier) in nullifiers.iter().enumerate() {
assert_eq!(hs.contains(nullifier, Some(seq)).unwrap(), true);
}
for (seq, nullifier) in nullifiers.iter().enumerate() {
hs.insert(&nullifier, 2400 + seq as usize).unwrap();
}
drop(hs);
}
// Make a copy of hash set from the same buffers.
{
let hs = unsafe { HashSet::from_bytes_copy(bytes.as_mut_slice()).unwrap() };
for (seq, nullifier) in nullifiers.iter().enumerate() {
assert_eq!(
hs.contains(nullifier, Some(2400 + seq as usize)).unwrap(),
true
);
}
}
}
#[test]
fn test_buffer_size_error() {
const VALUES: usize = 4800;
const SEQUENCE_THRESHOLD: usize = 2400;
let mut invalid_bytes = vec![0_u8; 256];
let res = unsafe {
HashSetZeroCopy::from_bytes_zero_copy_init(
invalid_bytes.as_mut_slice(),
VALUES,
SEQUENCE_THRESHOLD,
)
};
assert!(matches!(res, Err(HashSetError::BufferSize(_, _))));
}
}