1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
use std::{
    alloc::{self, handle_alloc_error, Layout},
    fmt, mem,
    ptr::NonNull,
};

use light_utils::{bigint::bigint_to_be_bytes_array, UtilsError};
use num_bigint::{BigUint, ToBigUint};
use num_traits::{Bounded, CheckedAdd, CheckedSub, FromBytes, ToPrimitive, Unsigned};
use thiserror::Error;

pub mod zero_copy;

#[derive(Debug, Error)]
pub enum HashSetError {
    #[error("The hash set is full, cannot add any new elements")]
    Full,
    #[error("The provided element is already in the hash set")]
    ElementAlreadyExists,
    #[error("The provided element doesn't exist in the hash set")]
    ElementDoesNotExist,
    #[error("The hash set is empty")]
    Empty,
    #[error("Could not convert the index from/to usize")]
    UsizeConv,
    #[error("Integer overflow")]
    IntegerOverflow,
    #[error("Invalid buffer size, expected {0}, got {1}")]
    BufferSize(usize, usize),
    #[error("Utils: big integer conversion error")]
    Utils(#[from] UtilsError),
}

#[cfg(feature = "solana")]
impl From<HashSetError> for u32 {
    fn from(e: HashSetError) -> u32 {
        match e {
            HashSetError::Full => 6001,
            HashSetError::ElementAlreadyExists => 6002,
            HashSetError::ElementDoesNotExist => 6003,
            HashSetError::Empty => 6004,
            HashSetError::UsizeConv => 6005,
            HashSetError::IntegerOverflow => 6006,
            HashSetError::BufferSize(_, _) => 6007,
            HashSetError::Utils(e) => e.into(),
        }
    }
}

#[cfg(feature = "solana")]
impl From<HashSetError> for solana_program::program_error::ProgramError {
    fn from(e: HashSetError) -> Self {
        solana_program::program_error::ProgramError::Custom(e.into())
    }
}

pub fn find_next_prime(mut n: f64) -> f64 {
    n = n.round();

    // Handle small numbers separately
    if n <= 2.0 {
        return 2.0;
    } else if n <= 3.0 {
        return 3.0;
    }

    // All prime numbers greater than 3 are of the form 6k + 1 or 6k + 5 (or
    // 6k - 1).
    // That's because:
    //
    // 6k is divisible by 2 and 3.
    // 6k + 2 = 2(3k + 1) is divisible by 2.
    // 6k + 3 = 3(2k + 1) is divisible by 3.
    // 6k + 4 = 2(3k + 2) is divisible by 2.
    //
    // This leaves only 6k + 1 and 6k + 5 as candidates.

    // Ensure the candidate is of the form 6k - 1 or 6k + 1.
    let remainder = n % 6.0;
    if remainder != 0.0 {
        n = n + 6.0 - remainder;

        let candidate = n - 1.0;
        if is_prime(candidate) {
            return candidate;
        }
    }

    loop {
        let candidate = n + 1.0;
        if is_prime(candidate) {
            return candidate;
        }
        let candidate = n + 5.0;
        if is_prime(candidate) {
            return candidate;
        }

        n += 6.0;
    }
}

pub fn is_prime(n: f64) -> bool {
    if n <= 1.0 {
        return false;
    }
    if n <= 3.0 {
        return true;
    }
    if n % 2.0 == 0.0 || n % 3.0 == 0.0 {
        return false;
    }
    let mut i = 5.0;
    while i * i <= n {
        if n % i == 0.0 || n % (i + 2.0) == 0.0 {
            return false;
        }
        i += 6.0;
    }
    true
}

#[derive(Clone, Debug, PartialEq, Copy)]
pub struct HashSetCell {
    value: [u8; 32],
    sequence_number: Option<usize>,
}

impl HashSetCell {
    pub fn value_bytes(&self) -> [u8; 32] {
        self.value
    }

    pub fn value_biguint(&self) -> BigUint {
        BigUint::from_bytes_be(self.value.as_slice())
    }

    pub fn sequence_number(&self) -> Option<usize> {
        self.sequence_number
    }
}

#[derive(Debug)]
pub struct HashSet<I>
where
    I: Bounded
        + CheckedAdd
        + CheckedSub
        + Clone
        + Copy
        + fmt::Display
        + From<u8>
        + PartialEq
        + PartialOrd
        + ToBigUint
        + TryFrom<u64>
        + TryFrom<usize>
        + Unsigned,
    usize: TryFrom<I>,
    <usize as TryFrom<I>>::Error: fmt::Debug,
{
    /// Capacity of `indices`, which is a prime number larger than the expected
    /// number of elements and an included load factor.
    pub capacity_indices: usize,
    /// Capacity of `values`, which is equal to the expected number of elements.
    pub capacity_values: usize,
    /// Difference of sequence numbers, after which the given element can be
    /// replaced by an another one (with a sequence number higher than the
    /// threshold).
    pub sequence_threshold: usize,

    /// Index of the next vacant cell in the value array.
    pub next_value_index: *mut usize,

    /// An array of indices which maps a hash set key to the index of its
    /// value which is stored in the `values` array. It has a size greater
    /// than the expected number of elements, determined by the load factor.
    indices: NonNull<Option<I>>,
    /// An array of values. It has a size equal to the expected number of
    /// elements.
    values: NonNull<Option<HashSetCell>>,
}

impl<I> HashSet<I>
where
    I: Bounded
        + CheckedAdd
        + CheckedSub
        + Clone
        + Copy
        + fmt::Display
        + From<u8>
        + PartialEq
        + PartialOrd
        + ToBigUint
        + TryFrom<u64>
        + TryFrom<usize>
        + Unsigned,
    u64: TryFrom<I>,
    usize: TryFrom<I>,
    <usize as TryFrom<I>>::Error: fmt::Debug,
{
    /// Size of the struct **without** dynamically sized fields.
    pub fn non_dyn_fields_size() -> usize {
        // capacity_indices
        mem::size_of::<usize>()
        // capacity_values
        + mem::size_of::<usize>()
        // sequence_threshold
        + mem::size_of::<usize>()
    }

    /// Size which needs to be allocated on Solana account to fit the hash set.
    pub fn size_in_account(
        capacity_indices: usize,
        capacity_values: usize,
    ) -> Result<usize, HashSetError> {
        let dyn_fields_size = Self::non_dyn_fields_size();
        let next_value_index_size = mem::size_of::<usize>();

        let indices_size_unaligned = mem::size_of::<Option<I>>() * capacity_indices;
        // Make sure that alignment of `indices` matches the alignment of `usize`.
        let indices_size = indices_size_unaligned + mem::align_of::<usize>()
            - (indices_size_unaligned % mem::align_of::<usize>());

        let values_size_unaligned = mem::size_of::<Option<HashSetCell>>() * capacity_values;
        // Make sure that alignment of `values` matches the alignment of `usize`.
        let values_size = values_size_unaligned + mem::align_of::<usize>()
            - (values_size_unaligned % mem::align_of::<usize>());

        Ok(dyn_fields_size + next_value_index_size + indices_size + values_size)
    }

    /// Returns the capacity of buckets for the desired `capacity`, while taking
    /// the load factor in account.
    pub fn capacity_indices(
        capacity_elements: usize,
        load_factor: f64,
    ) -> Result<f64, HashSetError> {
        // To treat `capacity_elements` as `f64`, we need to fit it in `u32`.
        // `u64`/`usize` can't be casted directoy to `f64`.
        let capacity_elements =
            u32::try_from(capacity_elements).map_err(|_| HashSetError::IntegerOverflow)?;
        let minimum = f64::from(capacity_elements) / load_factor;
        Ok(find_next_prime(minimum))
    }

    // Create a new hash set with the given capacity
    pub fn new(
        capacity_indices: usize,
        capacity_values: usize,
        sequence_threshold: usize,
    ) -> Result<Self, HashSetError> {
        let layout = Layout::new::<usize>();
        // SAFETY: Allocating a primitive type. There is no chance of
        // misalignment.
        let next_value_index = unsafe { alloc::alloc(layout) as *mut usize };
        if next_value_index.is_null() {
            handle_alloc_error(layout);
        }
        unsafe {
            *next_value_index = 0;
        }

        let layout = Layout::array::<Option<I>>(capacity_indices).unwrap();
        // SAFETY: `I` is always a signed integer. Creating a layout for an
        // array of integers of any size won't cause any panic.
        let indices_ptr = unsafe { alloc::alloc(layout) as *mut Option<I> };
        if indices_ptr.is_null() {
            handle_alloc_error(layout);
        }
        let indices = NonNull::new(indices_ptr).unwrap();
        for i in 0..capacity_indices {
            unsafe {
                std::ptr::write(indices_ptr.add(i), None);
            }
        }

        // SAFETY: `I` is always a signed integer. Creating a layout for an
        // array of integers of any size won't cause any panic.
        let layout = Layout::array::<Option<HashSetCell>>(capacity_values).unwrap();
        let values_ptr = unsafe { alloc::alloc(layout) as *mut Option<HashSetCell> };
        if values_ptr.is_null() {
            handle_alloc_error(layout);
        }
        let values = NonNull::new(values_ptr).unwrap();
        for i in 0..capacity_values {
            unsafe {
                std::ptr::write(values_ptr.add(i), None);
            }
        }

        Ok(HashSet {
            next_value_index,
            sequence_threshold,
            capacity_indices,
            capacity_values,
            indices,
            values,
        })
    }

    /// Creates a copy of `HashSet` from the given byte slice.
    ///
    /// # Purpose
    ///
    /// This method is meant to be used mostly in the SDK code, to convert
    /// fetched Solana accounts to actual hash sets. Creating a copy is the
    /// safest way of conversion in async Rust.
    ///
    /// # Safety
    ///
    /// This is highly unsafe. Ensuring the alignment and that the slice
    /// provides actual actual data of the hash set is the caller's
    /// responsibility.
    pub unsafe fn from_bytes_copy(bytes: &mut [u8]) -> Result<Self, HashSetError> {
        if bytes.len() < Self::non_dyn_fields_size() {
            return Err(HashSetError::BufferSize(
                Self::non_dyn_fields_size(),
                bytes.len(),
            ));
        }

        let capacity_indices = usize::from_ne_bytes(bytes[0..8].try_into().unwrap());
        let capacity_values = usize::from_ne_bytes(bytes[8..16].try_into().unwrap());
        let sequence_threshold = usize::from_ne_bytes(bytes[16..24].try_into().unwrap());

        let expected_size = Self::size_in_account(capacity_indices, capacity_values)?;
        if bytes.len() != expected_size {
            return Err(HashSetError::BufferSize(expected_size, bytes.len()));
        }

        let next_value_index_layout = Layout::new::<usize>();
        let next_value_index = unsafe { alloc::alloc(next_value_index_layout) as *mut usize };
        if next_value_index.is_null() {
            handle_alloc_error(next_value_index_layout);
        }
        unsafe {
            *next_value_index = usize::from_ne_bytes(bytes[24..32].try_into().unwrap());
        }

        let indices_layout = Layout::array::<Option<I>>(capacity_indices).unwrap();
        // SAFETY: `I` is always a signed integer. Creating a layout for an
        // array of integers of any size won't cause any panic.
        let indices_dst_ptr = unsafe { alloc::alloc(indices_layout) as *mut Option<I> };
        if indices_dst_ptr.is_null() {
            handle_alloc_error(indices_layout);
        }
        let indices = NonNull::new(indices_dst_ptr).unwrap();
        // Make sure that alignment of `indices` matches the alignment of `usize`.
        // This operation is adding a padding to the offset of `values` pointer.
        let indices_size = indices_layout.size() + mem::align_of::<usize>()
            - (indices_layout.size() % mem::size_of::<usize>());
        for i in 0..capacity_indices {
            std::ptr::write(indices_dst_ptr.add(i), None);
        }

        let offset = Self::non_dyn_fields_size() + mem::size_of::<usize>();
        let indices_src_ptr = bytes.as_ptr().add(offset) as *const Option<I>;
        std::ptr::copy(indices_src_ptr, indices_dst_ptr, capacity_indices);

        let values_layout = Layout::array::<Option<HashSetCell>>(capacity_values).unwrap();
        // SAFETY: `I` is always a signed integer. Creating a layout for an
        // array of integers of any size won't cause any panic.
        let values_dst_ptr = unsafe { alloc::alloc(values_layout) as *mut Option<HashSetCell> };
        if values_dst_ptr.is_null() {
            handle_alloc_error(values_layout);
        }
        let values = NonNull::new(values_dst_ptr).unwrap();
        for i in 0..capacity_values {
            std::ptr::write(values_dst_ptr.add(i), None);
        }

        let offset = offset + indices_size;
        let values_src_ptr = bytes.as_ptr().add(offset) as *const Option<HashSetCell>;
        std::ptr::copy(values_src_ptr, values_dst_ptr, capacity_values);

        Ok(Self {
            capacity_indices,
            capacity_values,
            next_value_index,
            sequence_threshold,
            indices,
            values,
        })
    }

    fn insert_into_occupied_cell(
        &mut self,
        value_index: usize,
        value: &BigUint,
        current_sequence_number: usize,
    ) -> Result<bool, HashSetError> {
        let value_bucket = unsafe { &mut *self.values.as_ptr().add(value_index) };
        match value_bucket {
            // The cell in the value array is already taken.
            Some(value_bucket) => {
                // We can overwrite that cell only if the element
                // is expired - when the difference between its
                // sequence number and provided sequence number is
                // greater than the threshold.
                if let Some(element_sequence_number) = value_bucket.sequence_number {
                    if current_sequence_number >= element_sequence_number {
                        *value_bucket = HashSetCell {
                            value: bigint_to_be_bytes_array(value)?,
                            sequence_number: None,
                        };
                        return Ok(true);
                    }
                }
                // Otherwise, we need to prevent having multiple valid
                // elements with the same value.
                if &BigUint::from_be_bytes(value_bucket.value.as_slice()) == value {
                    return Err(HashSetError::ElementAlreadyExists);
                }
            }
            // Panics: If there is a hash set cell pointing to a `None` value,
            // it means we really screwed up in the implementation...
            // That should never happen.
            None => unreachable!(),
        }
        Ok(false)
    }

    /// Inserts a value into the hash set, with `self.capacity_values` attempts.
    ///
    /// Every attempt uses quadratic probing to find an empty cell or a cell
    /// which can be overwritten.
    ///
    /// `current sequence_number` is used to check whether existing values can
    /// be overwritten.
    pub fn insert(
        &mut self,
        value: &BigUint,
        current_sequence_number: usize,
    ) -> Result<(), HashSetError> {
        for i in 0..self.capacity_values {
            let probe_index = (value.clone() + i.to_biguint().unwrap() * i.to_biguint().unwrap())
                % self.capacity_values.to_biguint().unwrap();
            let probe_index = probe_index.to_usize().unwrap();
            let index_bucket = unsafe { &mut *self.indices.as_ptr().add(probe_index) };

            match index_bucket {
                // The visited hash set cell points to a value in the array.
                Some(value_index) => {
                    let value_index =
                        usize::try_from(*value_index).map_err(|_| HashSetError::UsizeConv)?;
                    if self.insert_into_occupied_cell(
                        value_index,
                        value,
                        current_sequence_number,
                    )? {
                        return Ok(());
                    }
                }
                None => {
                    let value_bucket =
                        unsafe { &mut *self.values.as_ptr().add(*self.next_value_index) };
                    // SAFETY: `next_value_index` is always initialized.
                    *index_bucket = Some(
                        I::try_from(unsafe { *self.next_value_index })
                            .map_err(|_| HashSetError::IntegerOverflow)?,
                    );
                    *value_bucket = Some(HashSetCell {
                        value: bigint_to_be_bytes_array(value)?,
                        sequence_number: None,
                    });
                    // SAFETY: `next_value_index` is always initialized.
                    unsafe {
                        *self.next_value_index =
                            if *self.next_value_index < self.capacity_values - 1 {
                                *self.next_value_index + 1
                            } else {
                                0
                            };
                    }
                    return Ok(());
                }
            }
        }

        Err(HashSetError::Full)
    }

    pub fn find_element(
        &self,
        value: &BigUint,
        current_sequence_number: Option<usize>,
    ) -> Result<Option<(&mut HashSetCell, I)>, HashSetError> {
        for i in 0..self.capacity_values {
            let probe_index = (value.clone() + i.to_biguint().unwrap() * i.to_biguint().unwrap())
                % self.capacity_values.to_biguint().unwrap();
            let probe_index = probe_index.to_usize().unwrap();
            let index_bucket = unsafe { &*self.indices.as_ptr().add(probe_index) };

            match index_bucket {
                Some(value_index) => {
                    let value_bucket = self.by_value_index(
                        usize::try_from(*value_index).map_err(|_| HashSetError::UsizeConv)?,
                        current_sequence_number,
                    );
                    if let Some(value_bucket) = value_bucket {
                        if &value_bucket.value_biguint() == value {
                            return Ok(Some((value_bucket, *value_index)));
                        }
                    }
                }
                None => {
                    return Ok(None);
                }
            }
        }

        Ok(None)
    }

    /// Returns a first available element.
    pub fn first(
        &self,
        current_sequence_number: usize,
    ) -> Result<Option<&mut HashSetCell>, HashSetError> {
        for i in 0..self.capacity_values {
            let value_bucket = unsafe { &mut *self.values.as_ptr().add(i) };

            if let Some(value_bucket) = value_bucket {
                if let Some(element_sequence_number) = value_bucket.sequence_number {
                    if current_sequence_number < element_sequence_number {
                        return Ok(Some(value_bucket));
                    }
                } else {
                    return Ok(Some(value_bucket));
                }
            }
        }

        Ok(None)
    }

    /// Returns a first available element that does not have a sequence number.
    pub fn first_no_seq(&self) -> Result<Option<(HashSetCell, u16)>, HashSetError> {
        for i in 0..self.capacity_values {
            let value_bucket = unsafe { &mut *self.values.as_ptr().add(i) };

            if let Some(value_bucket) = value_bucket {
                if value_bucket.sequence_number.is_none() {
                    return Ok(Some((*value_bucket, i as u16)));
                }
            }
        }

        Ok(None)
    }

    pub fn by_value_index(
        &self,
        value_index: usize,
        current_sequence_number: Option<usize>,
    ) -> Option<&mut HashSetCell> {
        let value_bucket = unsafe { &mut *self.values.as_ptr().add(value_index) };
        if let Some(value_bucket) = value_bucket {
            match current_sequence_number {
                Some(current_sequence_number) => {
                    // If the `current_sequence_number` was specified,
                    // search for an element with either...
                    match value_bucket.sequence_number {
                        // ...a lower sequence number...
                        Some(element_sequence_number) => {
                            if current_sequence_number < element_sequence_number {
                                return Some(value_bucket);
                            }
                        }
                        // ...or without sequence number.
                        None => return Some(value_bucket),
                    }
                    if let Some(element_sequence_number) = value_bucket.sequence_number {
                        if current_sequence_number < element_sequence_number {
                            return Some(value_bucket);
                        }
                    }
                }
                None => {
                    // If the `current_sequence_number` was not specified,
                    // search for an element without specified sequence number.
                    if value_bucket.sequence_number.is_none() {
                        return Some(value_bucket);
                    }
                }
            }
        }

        None
    }

    /// Checks if the hash set contains a value.
    pub fn contains(&self, value: &BigUint, sequence_number: usize) -> Result<bool, HashSetError> {
        let element = self.find_element(value, Some(sequence_number))?;
        Ok(element.is_some())
    }

    /// Marks the given element with a given sequence number.
    pub fn mark_with_sequence_number(
        &mut self,
        value: &BigUint,
        sequence_number: usize,
    ) -> Result<(), HashSetError> {
        let element = self.find_element(value, None)?;

        match element {
            Some((element, _)) => {
                element.sequence_number = Some(sequence_number + self.sequence_threshold);
                Ok(())
            }
            None => Err(HashSetError::ElementDoesNotExist),
        }
    }

    pub fn iter(&self) -> HashSetIterator<I> {
        HashSetIterator {
            hash_set: self,
            current: 0,
        }
    }
}

impl<I> Drop for HashSet<I>
where
    I: Bounded
        + CheckedAdd
        + CheckedSub
        + Clone
        + Copy
        + fmt::Display
        + From<u8>
        + PartialEq
        + PartialOrd
        + ToBigUint
        + TryFrom<u64>
        + TryFrom<usize>
        + Unsigned,
    usize: TryFrom<I>,
    <usize as TryFrom<I>>::Error: fmt::Debug,
{
    fn drop(&mut self) {
        // SAFETY: As long as `next_value_index`, `capacity_indices` and
        // `capacity_values` are correct, this deallocaion is safe.
        unsafe {
            let layout = Layout::new::<usize>();
            alloc::dealloc(self.next_value_index as *mut u8, layout);

            let layout = Layout::array::<Option<I>>(self.capacity_indices).unwrap();
            alloc::dealloc(self.indices.as_ptr() as *mut u8, layout);

            let layout = Layout::array::<Option<HashSetCell>>(self.capacity_values).unwrap();
            alloc::dealloc(self.values.as_ptr() as *mut u8, layout);
        }
    }
}

pub struct HashSetIterator<'a, I>
where
    I: Bounded
        + CheckedAdd
        + CheckedSub
        + Clone
        + Copy
        + fmt::Display
        + From<u8>
        + PartialEq
        + PartialOrd
        + ToBigUint
        + TryFrom<u64>
        + TryFrom<usize>
        + Unsigned,
    usize: TryFrom<I>,
    <usize as TryFrom<I>>::Error: fmt::Debug,
{
    hash_set: &'a HashSet<I>,
    current: usize,
}

impl<'a, I> Iterator for HashSetIterator<'a, I>
where
    I: Bounded
        + CheckedAdd
        + CheckedSub
        + Clone
        + Copy
        + fmt::Display
        + From<u8>
        + PartialEq
        + PartialOrd
        + ToBigUint
        + TryFrom<u64>
        + TryFrom<usize>
        + Unsigned,
    usize: TryFrom<I>,
    <usize as TryFrom<I>>::Error: fmt::Debug,
{
    type Item = (usize, &'a HashSetCell);

    fn next(&mut self) -> Option<Self::Item> {
        if self.current < self.hash_set.capacity_values {
            let element_index = self.current;
            let element = unsafe { &*self.hash_set.values.as_ptr().add(element_index) };

            self.current += 1;
            element.as_ref().map(|element| (element_index, element))
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use ark_bn254::Fr;
    use ark_ff::UniformRand;
    use rand::thread_rng;

    use super::*;

    #[test]
    fn test_find_next_prime() {
        assert_eq!(find_next_prime(0.0), 2.0);
        assert_eq!(find_next_prime(2.0), 2.0);
        assert_eq!(find_next_prime(3.0), 3.0);
        assert_eq!(find_next_prime(4.0), 5.0);

        assert_eq!(find_next_prime(10.0), 11.0);
        assert_eq!(find_next_prime(28.0), 29.0);

        assert_eq!(find_next_prime(100.0), 101.0);
        assert_eq!(find_next_prime(1000.0), 1009.0);

        assert_eq!(find_next_prime(102.0), 103.0);
        assert_eq!(find_next_prime(105.0), 107.0);

        assert_eq!(find_next_prime(7900.0), 7901.0);
        assert_eq!(find_next_prime(7907.0), 7907.0);
    }

    #[test]
    fn test_capacity_cells() {
        assert_eq!(HashSet::<u16>::capacity_indices(256, 0.5).unwrap(), 521.0);
        assert_eq!(HashSet::<u16>::capacity_indices(4800, 0.7).unwrap(), 6857.0);
    }

    /// Manual test cases. A simple check whether basic properties of the hash
    /// set work.
    #[test]
    fn test_hash_set_manual() {
        let mut hs = HashSet::<u16>::new(521, 256, 4).unwrap();

        // Insert an element and immediately mark it with a sequence number.
        // An equivalent to a single insertion in Light Protocol
        let element_1_1 = 1.to_biguint().unwrap();
        hs.insert(&element_1_1, 0).unwrap();
        hs.mark_with_sequence_number(&element_1_1, 1).unwrap();

        // Check if element exists in the set.
        assert_eq!(hs.contains(&element_1_1, 1).unwrap(), true);
        // Try inserting the same element, even though we didn't reach the
        // threshold.
        assert!(matches!(
            hs.insert(&element_1_1, 1),
            Err(HashSetError::ElementAlreadyExists)
        ));

        // Insert multiple elements and mark them with one sequence number.
        // An equivalent to a batched insertion in Light Protocol.

        let element_2_3 = 3.to_biguint().unwrap();
        let element_2_6 = 6.to_biguint().unwrap();
        let element_2_8 = 8.to_biguint().unwrap();
        let element_2_9 = 9.to_biguint().unwrap();
        hs.insert(&element_2_3, 1).unwrap();
        hs.insert(&element_2_6, 1).unwrap();
        hs.insert(&element_2_8, 1).unwrap();
        hs.insert(&element_2_9, 1).unwrap();
        assert_eq!(hs.contains(&element_2_3, 2).unwrap(), true);
        assert_eq!(hs.contains(&element_2_6, 2).unwrap(), true);
        assert_eq!(hs.contains(&element_2_8, 2).unwrap(), true);
        assert_eq!(hs.contains(&element_2_9, 2).unwrap(), true);
        hs.mark_with_sequence_number(&element_2_3, 2).unwrap();
        hs.mark_with_sequence_number(&element_2_6, 2).unwrap();
        hs.mark_with_sequence_number(&element_2_8, 2).unwrap();
        hs.mark_with_sequence_number(&element_2_9, 2).unwrap();
        assert!(matches!(
            hs.insert(&element_2_3, 2),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_6, 2),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_8, 2),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_9, 2),
            Err(HashSetError::ElementAlreadyExists)
        ));

        let element_3_11 = 11.to_biguint().unwrap();
        let element_3_13 = 13.to_biguint().unwrap();
        let element_3_21 = 21.to_biguint().unwrap();
        let element_3_29 = 29.to_biguint().unwrap();
        hs.insert(&element_3_11, 2).unwrap();
        hs.insert(&element_3_13, 2).unwrap();
        hs.insert(&element_3_21, 2).unwrap();
        hs.insert(&element_3_29, 2).unwrap();
        assert_eq!(hs.contains(&element_3_11, 3).unwrap(), true);
        assert_eq!(hs.contains(&element_3_13, 3).unwrap(), true);
        assert_eq!(hs.contains(&element_3_21, 3).unwrap(), true);
        assert_eq!(hs.contains(&element_3_29, 3).unwrap(), true);
        hs.mark_with_sequence_number(&element_3_11, 3).unwrap();
        hs.mark_with_sequence_number(&element_3_13, 3).unwrap();
        hs.mark_with_sequence_number(&element_3_21, 3).unwrap();
        hs.mark_with_sequence_number(&element_3_29, 3).unwrap();
        assert!(matches!(
            hs.insert(&element_3_11, 3),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_3_13, 3),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_3_21, 3),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_3_29, 3),
            Err(HashSetError::ElementAlreadyExists)
        ));

        let element_4_93 = 93.to_biguint().unwrap();
        let element_4_65 = 64.to_biguint().unwrap();
        let element_4_72 = 72.to_biguint().unwrap();
        let element_4_15 = 15.to_biguint().unwrap();
        hs.insert(&element_4_93, 3).unwrap();
        hs.insert(&element_4_65, 3).unwrap();
        hs.insert(&element_4_72, 3).unwrap();
        hs.insert(&element_4_15, 3).unwrap();
        assert_eq!(hs.contains(&element_4_93, 4).unwrap(), true);
        assert_eq!(hs.contains(&element_4_65, 4).unwrap(), true);
        assert_eq!(hs.contains(&element_4_72, 4).unwrap(), true);
        assert_eq!(hs.contains(&element_4_15, 4).unwrap(), true);
        hs.mark_with_sequence_number(&element_4_93, 4).unwrap();
        hs.mark_with_sequence_number(&element_4_65, 4).unwrap();
        hs.mark_with_sequence_number(&element_4_72, 4).unwrap();
        hs.mark_with_sequence_number(&element_4_15, 4).unwrap();

        // Try inserting the same elements we inserted before.
        //
        // Ones with the sequence number difference lower or equal to the
        // sequence threshold (4) will fail.
        //
        // Ones with the higher dif will succeed.
        assert!(matches!(
            hs.insert(&element_1_1, 4),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_3, 5),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_6, 5),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_8, 5),
            Err(HashSetError::ElementAlreadyExists)
        ));
        assert!(matches!(
            hs.insert(&element_2_9, 5),
            Err(HashSetError::ElementAlreadyExists)
        ));
        hs.insert(&element_1_1, 5).unwrap();
        hs.insert(&element_2_3, 6).unwrap();
        hs.insert(&element_2_6, 6).unwrap();
        hs.insert(&element_2_8, 6).unwrap();
        hs.insert(&element_2_9, 6).unwrap();
    }

    /// Test cases with random prime field elements.
    #[test]
    fn test_hash_set_random() {
        let mut hs = HashSet::<u16>::new(6857, 4800, 2400).unwrap();

        // The hash set should be empty.
        assert_eq!(hs.first(0).unwrap(), None);

        let mut rng = thread_rng();

        let nullifiers: [BigUint; 2400] =
            std::array::from_fn(|_| BigUint::from(Fr::rand(&mut rng)));

        for (seq, nullifier) in nullifiers.iter().enumerate() {
            assert_eq!(hs.contains(&nullifier, seq).unwrap(), false);
            hs.insert(&nullifier, seq as usize).unwrap();
            assert_eq!(hs.contains(&nullifier, seq).unwrap(), true);
            assert_eq!(
                hs.find_element(&nullifier, Some(seq))
                    .unwrap()
                    .unwrap()
                    .0
                    .clone(),
                HashSetCell {
                    value: bigint_to_be_bytes_array(&nullifier).unwrap(),
                    sequence_number: None,
                }
            );

            hs.mark_with_sequence_number(&nullifier, seq).unwrap();
            assert_eq!(
                hs.find_element(&nullifier, Some(seq))
                    .unwrap()
                    .unwrap()
                    .0
                    .clone(),
                HashSetCell {
                    value: bigint_to_be_bytes_array(&nullifier).unwrap(),
                    sequence_number: Some(2400 + seq)
                }
            );

            // Trying to insert the same nullifier, before reaching the
            // sequence threshold, should fail.
            assert!(matches!(
                hs.insert(&nullifier, seq as usize + 1),
                Err(HashSetError::ElementAlreadyExists),
            ));
        }

        for (i, element) in hs.iter() {
            assert_eq!(element.value_biguint(), nullifiers[i]);
        }

        // As long as we request the first element while providing sequence
        // numbers not reaching the threshold (from 0 to 2399)
        for seq in 0..2399 {
            assert_eq!(
                hs.first(seq).unwrap().unwrap().value_biguint(),
                nullifiers[0]
            );
        }
        // Once we hit the threshold, we are going to receive next elements as
        // the first ones.
        for (seq, nullifier) in nullifiers.iter().enumerate() {
            assert_eq!(
                &hs.first(2399 + seq).unwrap().unwrap().value_biguint(),
                nullifier
            );
        }

        // As we reach the sequence threshold, we should be able to override
        // the same nullifiers.
        for (seq, nullifier) in nullifiers.iter().enumerate() {
            hs.insert(&nullifier, 2400 + seq as usize).unwrap();
        }
    }
}